Japanese Page

Publications

  1. Egawa R, Hiraga K, Matsui R, Watanabe D, Kuba H
    Regional heterogeneities of oligodendrocytes underlie biased Ranvier node spacing along single axons in sound localization circuit.
    eLife (in press).
  2. Egawa R, Yawo H, Kuba H
    Activity-dependent refinement of axonal projections forms one-to-one connection pattern in the developing chick ciliary ganglion.
    Front. Cell. Neurosci. (in press).
  3. Sato R, Adachi R, Yokoi N, Tsujimura K, Egawa R, Hara Y, Fukata Y, Fukata M, Ogi T, Sone M, Kuba H
    Loss of neuronal activity facilitates surface accumulation of p75NTR and cell death in avian cochlear nucleus.
    Neurosci. Res. 213:23-34 (2025).
  4. Jahan I, Adachi R, Egawa R, Nomura H, Kuba H
    CDK5/p35-dependent microtubule reorganization contributes to homeostatic shortening of the axon initial segment.
    J. Neurosci. 43:359-372 (2023).
  5. Yamada R, Kuba H
    Cellular strategies for frequency-dependent computation of interaural time difference.
    Front. Synaptic. Neurosci. 14:891740 (2022).
  6. Yamada R, Kuba H
    Dendritic synapse geometry optimizes binaural computation in a sound localization circuit.
    Sci. Adv. 7, eabh0024 (2021).
  7. Al-Yaari M, Onogi C, Yamada R, Adachi R, Kondo D, Kuba H
    Tonotopic specializations in number, size, and reversal potential of GABAergic inputs fine-tune temporal coding at avian cochlear nucleus.
    J. Neurosci. 41, 8904-8916 (2021).
  8. Akter N, Fukaya R, Adachi R, Kawabe H, Kuba H
    Structural and functional refinement of the axon initial segment in avian cochlear nucleus during development.
    J. Neurosci. 40, 6709-6721 (2020).
  9. Al-Yaari M, Yamada R, Kuba H
    Excitatory-inhibitory synaptic coupling in avian nucleus magnocellularis.
    J. Neurosci. 40, 619-631 (2020).
  10. Adachi R, Yamada R, Kuba H
    Tonotopic differentiation of coupling between Ca2+ and Kv1.1 expression in brainstem auditory circuit.
    iScience 13, 199-213 (2019).
  11. Akter N, Adachi R, Kato A, Fukaya R, Kuba H
    Auditory input shapes tonotopic differentiation of Kv1.1 expression in avian cochlear nucleus during late development.
    J. Neurosci. 38, 2967-2980 (2018).
  12. Fukaya R, Yamada R, Kuba H
    Tonotopic variation of the T-type Ca2+ current in avian auditory coincidence detector neurons.
    J. Neurosci. 38, 335-346 (2018).
  13. Yamada R, Kuba H
    Structural and functional plasticity at the axon initial segment.
    Front. Cell. Neurosci. 10, 250 (2016).
  14. Susuki K, Kuba H
    Activity-dependent regulation of excitable axonal domains.
    J. Physiol. Sci. 66, 99-104 (2016).
  15. Kuba H, Yamada R, Ishiguro G, Adachi R
    Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity.
    Nat. Commun. 6:8815 (2015).
  16. Adachi R, Yamada R, Kuba H
    Plasticity of the axonal trigger zone.
    Neuroscientist 21, 255-265 (2015).
  17. Kuba H, Adachi R, Ohmori H
    Activity-dependent and activity-independent development of the axon initial segment.
    J. Neurosci. 34, 3443-3453 (2014).
  18. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S
    Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members.
    J. Biol. Chem. 288, 13305-13316 (2013).
  19. Yamada R, Okuda H, Kuba H, Nishino E, Ishii TM, Ohmori H
    The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    J. Neurosci. 33, 3927-3938 (2013).
  20. Okuda H, Yamada R, Kuba H, Ohmori H
    Metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus lamirnaris of the chick.
    J. Physiol. (Lond.) 591, 365-378 (2013).
  21. Kuba H
    Structural tuning and plasticity of axon initial segment in auditory neurons.
    J. Physiol. (Lond.) 590, 5571-5579 (2012).
  22. Taruno A, Ohmori H, Kuba H
    Inhibition of presynaptic Na(+)/K(+)-ATPase reduces readily releasable pool size at the avian end-bulb synapse.
    Neurosci. Res. 72, 117-128 (2012).
  23. Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, Bender KJ
    Short- and long-term plasticity at the axon initial segment
    J. Neurosci. 31, 16045-16055 (2011).
  24. Kuba H
    Plasticity at the axon initial segment.
    Commun. Integr. Biol. 3, 597-598 (2010).
  25. Kuba H, Oichi Y, Ohmori H
    Presynaptic activity regulates Na+ channel distribution at the axon initial segment.
    Nature 465, 1075-1078 (2010).
  26. Kuba H, Ohmori H
    Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick.
    J. Physiol. (Lond.) 587:87-100 (2009).
  27. Nishino E, Yamada R, Kuba H, Hioki H, Furuta T, Kaneko T, Ohmori H
    Sound-intensity dependent compensation for the small interaural time difference cue for sound source localization.
    J. Neurosci. 28, 7153-7164 (2008).
  28. Kuba H
    Cellular and molecular mechanisms of avian auditory coincidence detection.
    Neurosci. Res. 59, 370-376 (2007) (update article).
  29. Kuba H, Ishii TM, Ohmori H
    Axonal site of spike initiation enhances auditory coincidence detection.
    Nature 444, 1069-1072 (2006).
  30. Yamada R, Kuba H, Ishii TM, Ohmori H
    Hyperpolarization-activated cyclic nucleotide-gated cation channels regulate auditory coincidence detection in nucleus laminaris of the chick.
    J. Neurosci. 25, 8867-8877 (2005).
  31. Kuba H, Yamada R, Fukui I, Ohmori H
    Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick.
    J. Neurosci. 25, 1924-1934 (2005).
  32. Kuba H, Yamada R, Ohmori H
    Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken.
    J. Physiol. (Lond.) 552, 611-620 (2003).
  33. Kuba H, Koyano K, Ohmori H
    Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chick.
    J. Physiol. (Lond.) 540, 529-542 (2002).
  34. Kuba H, Koyano K, Ohmori H
    Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo.
    Eur. J. Neurosci. 15, 984-990 (2002).