Original papers (*, Corresponding author)

  1. Xun, Y., Jiang, Y., Xu, B., Tang, M., Ludwig, S., Nakamura, K., Mukhopadhyay, S., Liu, C., Beutler, B., & Zhang, Z.*
    GPR45 modulates Gαs at primary cilia of the paraventricular hypothalamus to control food intake.
    Science 388(6751):eadp3989, 2025. PubMed
  2. Oya, M., Miyasaka, Y., Nakamura, Y., Tanaka, M., Suganami, T., Mashimo, T. & Nakamura, K.*
    Age-related ciliopathy: Obesogenic shortening of melanocortin-4 receptor-bearing neuronal primary cilia.
    Cell Metab. 36(5):1044-1058.e10, 2024. PubMed
    [See press release from Nagoya University and EurekAlert!]
  3. Yahiro, T., Kataoka, N., & Nakamura, K.*
    Two ascending thermosensory pathways from the lateral parabrachial nucleus that mediate behavioral and autonomous thermoregulation.
    J. Neurosci. 43(28):5221–5240, 2023. PubMed
    [See press release from Nagoya University and EurekAlert!]
  4. Tsuji, S., Brace, C. S., Yao, R., Tanie, Y., Tada, H., Rensing, N., Mizuno, S., Almunia, J., Kong, Y., Nakamura, K., Furukawa, T., Ogiso, N., Toyokuni, S., Takahashi, S., Wong, M., Imai, S. I., & Satoh, A.* (equal contribution)
    Sleep-wake patterns are altered with age, Prdm13 signaling in the DMH, and diet restriction in mice.
    Life Sci. Alliance 6(6):e202301992, 2023. PubMed
  5. Garami, A.*, Steiner, A.A., Pakai, E., Wanner, S.P., Almeida, M.C., Keringer, P., Oliveira, D.L., Nakamura, K., Morrison, S.F., & Romanovsky, A.A.*
    The neural pathway of the hyperthermic response to antagonists of the transient receptor potential vanilloid-1 channel.
    Temperature 10(1):121–135, 2023. PubMed
  6. Nakamura, Y., Yahiro, T., Fukushima, A., Kataoka, N., Hioki, H., & Nakamura, K.*
    Prostaglandin EP3 receptor–expressing preoptic neurons bidirectionally control body temperature via tonic GABAergic signaling.
    Sci. Adv. 8(51):eadd5463, 2022. PubMed
    [See press release from Nagoya University and EurekAlert!]
  7. Fukushima, A., Kataoka, N., & Nakamura, K.*
    An oxytocinergic neural pathway that stimulates thermogenic and cardiac sympathetic outflow.
    Cell Rep. 40(12):111380, 2022. PubMed
    [See press release from Nagoya University and summary at PSJ]
  8. Koba, S.*, Kumada, N., Narai, E., Kataoka, N., Nakamura, K., & Watanabe, T.
    A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses.
    Nat. Commun. 13:5079, 2022. PubMed
  9. Hayashi, Y., Shimizu, I.*, Yoshida, Y., Ikegami, R., Suda, M., Katsuumi, G., Fujiki, S., Ozaki, K., Abe, M., Sakimura, K., Okuda, S., Hayano, T., Nakamura, K., Walsh, K., Jespersen, N.Z., Nielsen, S., Scheele, C., & Minamino, T.* (equal contribution)
    Coagulation factors promote brown adipose tissue dysfunction and abnormal systemic metabolism in obesity.
    iScience 25(7):104547, 2022. PubMed
  10. Yoneshiro, T., Kataoka, N., Walejko, J.M., Ikeda, K., Brown, Z., Yoneshiro, M., Crown, S.B., Osawa, T., Sakai, J., McGarrah, R.W., White, P.J., Nakamura, K., & Kajimura, S.*
    Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever.
    eLife 10:e66865, 2021. PubMed
  11. Horie, T.*, Nakao, T., Miyasaka, Y., Nishino, T., Matsumura, S., Nakazeki, F., Ide, Y., Kimura, M., Tsuji, S., Rodriguez, R.R., Watanabe, T., Yamasaki, T., Xu, S., Otani, C., Miyagawa, S., Matsushita, K., Sowa, N., Omori, A., Tanaka, J., Nishimura, C., Nishiga, M., Kuwabara, Y., Baba, O., Watanabe, S., Nishi, H., Nakashima, Y., Picciotto, M.R., Inoue, H., Watanabe, D., Nakamura, K., Sasaki, T., Kimura, T., & Ono, K.*
    microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity.
    Nat. Commun. 12:843, 2021. PubMed
  12. Yoshimi, K., Oka, Y., Miyasaka, Y., Kotani, Y., Yasumura, M., Uno, Y., Hattori, K., Tanigawa, A., Sato, M., Oya, M., Nakamura, K., Matsushita, N., Kobayashi, K., & Mashimo, T.*
    Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Hum. Genet. 140:277–287, 2021. PubMed
  13. Kataoka, N., Shima, Y., Nakajima, K., & Nakamura, K.*
    A central master driver of psychosocial stress responses in the rat.
    Science 367(6482):1105–1112, 2020. PubMed (Free access to full manuscript from HERE)
    [See press release from Nagoya University, summary at PSJ, and commentary in Nature]
  14. Ota, W., Nakane, Y., Kashio, M., Suzuki, Y., Nakamura, K., Mori, Y., Tominaga, M., & Yoshimura, T.*
    Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior.
    Sci. Rep. 9:3706, 2019. PubMed
  15. Koba, S.*, Hanai, E., Kumada, N., Kataoka, N., Nakamura, K., & Watanabe, T.
    Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla.
    J. Physiol. 596:4581–4595, 2018. PubMed
  16. Yahiro, T., Kataoka, N., Nakamura, Y. & Nakamura, K.*
    The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation.
    Sci. Rep. 7:5031, 2017. PubMed
    [See press release from Nagoya University]
  17. Nakamura, Y., Yanagawa, Y., Morrison, S.F. & Nakamura, K.*
    Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication.
    Cell Metab. 25:322–334, 2017. PubMed
    [See press release from Nagoya University]
  18. Sohn, J., Okamoto, S., Kataoka, N., Kaneko, T., Nakamura, K. & Hioki, H.*
    Differential inputs to the perisomatic and distal-dendritic compartments of VIP-positive neurons in layer 2/3 of the mouse barrel cortex.
    Front. Neuroanat. 10:124, 2016. PubMed
  19. Chiba, Y., Yamada, T.*, Tsukita, S., Takahashi, K., Munakata, Y., Shirai, Y., Kodama, S., Asai, Y., Sugisawa, T., Uno, K., Sawada, S., Imai, J., Nakamura, K. & Katagiri, H.
    Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice.
    PLoS One 11:e0150756, 2016. PubMed
  20. Kataoka, N., Hioki, H., Kaneko, T. & Nakamura, K.*
    Psychological stress activates a dorsomedial hypothalamus–medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia.
    Cell Metab. 20:346–358, 2014. PubMed
    [See press release from Cell Press]
  21. Lkhagvasuren, B., Oka, T., Nakamura, Y., Hayashi, N., Sudo, N. & Nakamura, K.*
    Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment.
    Neuroscience 272:34–57, 2014. PubMed
  22. Hiraoka, Y., Matsuoka, T., Ohno, M., Nakamura, K., Saijo, S., Matsumura, S., Nishi, K., Sakamoto, J., Chen, P.-M., Inoue, K., Fushiki, T., Kita, T., Kimura, T. & Nishi, E.*
    Critical roles of nardilysin in the maintenance of body temperature homoeostasis.
    Nature Commun. 5:3224, 2014. PubMed
  23. Lkhagvasuren, B., Nakamura, Y., Oka, T., Sudo, N. & Nakamura, K.*
    Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region.
    Eur. J. Neurosci. 34:1442–1452, 2011. PubMed
  24. Nakamura, K.* & Morrison, S.F.
    Central efferent pathways for cold-defensive and febrile shivering.
    J. Physiol. 589:3641–3658, 2011. PubMed
  25. Zhang, Z.-H., Yu, Y., Wei, S.-G., Nakamura, Y., Nakamura, K. & Felder, R.B.*
    EP3 receptors mediate PGE2-induced hypothalamic paraventricular nucleus excitation and sympathetic activation.
    Am. J. Physiol. 301:H1559–H1569, 2011. PubMed
  26. Wu, S., Esumi, S., Watanabe, K., Chen, J., Nakamura, K.C., Nakamura, K., Kometani, K., Minato, N., Yanagawa, Y., Akashi, K., Sakimura, K., Kaneko, T. & Tamamaki, N.*
    Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon.
    Development 138:2499–2509, 2011. PubMed
  27. Nakamura, K.* & Morrison, S.F.
    A Thermosensory pathway mediating heat-defense responses.
    Proc. Natl. Acad. Sci. U.S.A. 107:8848–8853, 2010. PubMed
  28. Nakamura, Y., Nakamura, K.* & Morrison, S.F.
    Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.
    Neuroscience 161:614–620, 2009. PubMed
  29. Manczak, M., Mao, P., Nakamura, K., Bebbington, C., Park, B. & Reddy, P.H.*
    Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1-42 and suppresses microglial activity in a transgenic mouse model of Alzheimer's disease.
    Hum. Mol. Genet. 18:3876–3893, 2009. PubMed
  30. Reddy, P.H.*, Manczak, M., Zhao, W., Nakamura, K., Bebbington, C., Yarranton, G. & Mao, P.
    Granulocyte-macrophage colony-stimulating factor antibody suppresses microglial activity: implications for anti-inflammatory effects in Alzheimer's disease and multiple sclerosis.
    J. Neurochem. 111:1514–1528, 2009. PubMed
  31. Nakamura, K.* & Morrison, S.F.
    Preoptic mechanism for cold-defensive responses to skin cooling.
    J. Physiol. 586:2611–2620, 2008. PubMed
  32. Nakamura, K.* & Morrison, S.F.
    A thermosensory pathway that controls body temperature.
    Nature Neurosci. 11:62–71, 2008. PubMed
    [See press release from Nature Neuroscience & Oregon Health & Science University]
  33. Tsuchiya, H., Oka, T., Nakamura, K., Ichikawa, A., Saper, C.B. & Sugimoto, Y.*
    Prostaglandin E2 attenuates preoptic expression of GABAA receptors via EP3 receptors.
    J. Biol. Chem. 283:11064–11071, 2008. PubMed
  34. Nakamura, K.* & Morrison, S.F.
    Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue.
    Am. J. Physiol. 292:R127–R136, 2007. PubMed
  35. Nakamura, K.*, Yamashita, Y., Tamamaki, N., Katoh, H., Kaneko, T. & Negishi, M. (equal contribution)
    In vivo function of Rnd2 in the development of neocortical pyramidal neurons.
    Neurosci. Res. 54:149–153, 2006. PubMed
  36. Nakamura, Y., Nakamura, K.*, Matsumura, K., Kobayashi, S., Kaneko, T. & Morrison, S.F.
    Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus.
    Eur. J. Neurosci. 22:3137–3146, 2005. PubMed
  37. Wu, S.-X., Goebbels, S., Nakamura, K., Nakamura, K., Kometani, K., Minato, N., Kaneko, T., Nave, K.-A. & Tamamaki, N.*
    Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone.
    Proc. Natl. Acad. Sci. U.S.A. 102:17172–17177, 2005. PubMed
  38. Nakamura, K.*, Matsumura, K., Hübschle, T., Nakamura, Y., Hioki, H., Fujiyama, F., Boldogköi, Z., König, M., Thiel, H.-J., Gerstberger, R., Kobayashi, S. & Kaneko, T.
    Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions.
    J. Neurosci. 24:5370–5380, 2004. PubMed
  39. Nakamura, K.*, Wu, S.-X., Fujiyama, F., Okamoto, K., Hioki, H. & Kaneko, T.
    Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons.
    NeuroReport 15:431–436, 2004. PubMed
  40. Kopp, U.C.*, Cicha, M.Z., Nakamura, K., Nüsing, R.M., Smith, L.A. & Hökfelt, T.
    Activation of EP4 receptors contributes to prostaglandin E2 mediated stimulation of renal sensory nerves.
    Am. J. Physiol. 287:F1269–F1282, 2004. PubMed
  41. Hioki, H., Fujiyama, F., Nakamura, K., Wu, S.-X., Matsuda, W. & Kaneko, T.*
    Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex.
    Cereb. Cortex 14:1266–1275, 2004. PubMed
  42. Yoshida, K., Nakamura, K., Matsumura, K., Kanosue, K., König, M., Thiel, H.-J., Boldogköi, Z., Toth, I., Roth, J., Gerstberger, R. & Hübschle, T.*
    Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3.
    Eur. J. Neurosci. 18:1848–1860, 2003. PubMed
  43. Nakamura, K.*, Matsumura, K., Kaneko, T., Kobayashi, S., Katoh, H. & Negishi, M.
    The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area.
    J. Neurosci. 22:4600–4610, 2002. PubMed
  44. Mouihate, A., Clerget-Froidevaux, M.S., Nakamura, K., Negishi, M., Wallace, J.L. & Pittman, Q.J.*
    Suppression of fever at near term is associated with reduced COX-2 protein expression in rat hypothalamus.
    Am. J. Physiol. 283:R800–R805, 2002. PubMed
  45. Ishikawa, Y., Katoh, H., Nakamura, K., Mori, K. & Negishi, M.*
    Developmental changes in expression of small GTPase RhoG mRNA in the rat brain.
    Brain Res. Mol. Brain Res. 106:145–150, 2002. PubMed
  46. Nakamura, K.*, Li, Y.-Q., Kaneko, T., Katoh, H. & Negishi, M.
    Prostaglandin EP3 receptor protein in serotonin and catecholamine cell groups: a double immunofluorescence study in the rat brain.
    Neuroscience 103:763–775, 2001. PubMed
  47. Nakamura, K.*, Kaneko, T., Yamashita, Y., Hasegawa, H., Katoh, H. & Negishi, M.
    Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system.
    J. Comp. Neurol. 421:543–569, 2000. PubMed
  48. Yamaguchi, Y., Katoh, H., Yasui, H., Aoki, J., Nakamura, K. & Negishi, M.*
    12 and Gα13 inhibit Ca2+-dependent exocytosis through Rho/Rho-associated kinase-dependent pathway.
    J. Neurochem. 75:708–717, 2000. PubMed
  49. Hasegawa, H., Katoh, H., Yamaguchi, Y., Nakamura, K., Futakawa, S. & Negishi, M.*
    Different membrane targeting of prostaglandin EP3 receptor isoforms dependent on their carboxy-terminal tail structures.
    FEBS Lett. 473:76–80, 2000. PubMed
  50. Nakamura, K., Kaneko, T., Yamashita, Y., Hasegawa, H., Katoh, H., Ichikawa, A. & Negishi, M.*
    Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus.
    Neurosci. Lett. 260:117–120, 1999. PubMed
  51. Hasegawa, H., Fujita, H., Katoh, H., Aoki, J., Nakamura, K., Ichikawa, A. & Negishi, M.*
    Opposite regulation of transepithelial electrical resistance and paracellular permeability by Rho in Madin-Darby canine kidney cells.
    J. Biol. Chem. 274:20982–20988, 1999. PubMed
  52. Aoki, J., Katoh, H., Yasui, H., Yamaguchi, Y., Nakamura, K., Hasegawa, H., Ichikawa, A. & Negishi, M.*
    Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases.
    Biochem. J. 340:365–369, 1999. PubMed
  53. Satoh, S., Chang, C.-S., Katoh, H., Hasegawa, H., Nakamura, K., Aoki, J., Fujita, H., Ichikawa, A. & Negishi, M.*
    The key amino acid residue of prostaglandin EP3 receptor for governing G protein association and activation steps.
    Biochem. Biophys. Res. Commun. 255:164–168, 1999. PubMed
  54. Nakamura, K., Katoh, H., Ichikawa, A. & Negishi, M.*
    Inhibition of dopamine release by prostaglandin EP3 receptor via pertussis toxin-sensitive and -insensitive pathways in PC12 cells.
    J. Neurochem. 71:646–652, 1998. PubMed

Review articles and Commentaries (*, Corresponding author)

  1. Morrison, S.F.*, Nakamura, K. & Tupone, D.
    Thermoregulation in mice: The road to understanding torpor hypothermia and the shortcomings of a circuit for generating fever.
    Temperature 9 (1):8–11, 2022. PubMed
  2. Nakamura, K.* & Morrison, S.F.
    Central sympathetic network for thermoregulatory responses to psychological stress.
    Auton. Neurosci. 237:102918, 2022. PubMed
  3. Nakamura, K.*, Nakamura, Y. & Kataoka, N.
    A hypothalamomedullary network for physiological responses to environmental stresses.
    Nature Rev. Neurosci. 23 (1):35–52, 2022. PubMed
  4. Kataoka, N. & Nakamura, K.
    Where mind meets body: a master brain circuit for stress responses.
    The Science Breaker doi: 10.25250/thescbr.brk404, 2020.
  5. Morrison, S.F.* & Nakamura, K.
    Central mechanisms for thermoregulation.
    Annu. Rev. Physiol. 81:285-308, 2019. PubMed
  6. Nakamura, K.* & Nakamura, Y.
    Hunger and satiety signaling: Modeling two hypothalamomedullary pathways for energy homeostasis.
    BioEssays 40:1700252, 2018. Journal site PubMed
  7. Nakamura, Y. & Nakamura, K.*
    Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability.
    Pflügers Archiv - European Journal of Physiology 470:823–837, 2018. Journal site PubMed
  8. Nakamura, K.*
    Neural circuit for psychological stress-induced hyperthermia.
    Temperature 2:352–361, 2015. Journal site
  9. Nakamura, K.*
    Afferent neural pathways that transmit environmental thermosensory information for body temperature regulation.
    Auton. Nerv. Syst. 51:91–98, 2014. [in Japanese]
  10. Nakamura, K.*
    Central mechanism for regulation of brown fat thermogenesis to survive cold, infection and stress.
    Journal of Clinical and Experimental Medicine (IGAKU NO AYUMI) 242:913–917, 2012. [in Japanese] CiNii
  11. Nakamura, K.*
    Central neuronal mechanism for body temperature regulation.
    Japanese Journal of Clinical Medicine 70:922–926, 2012. [in Japanese] CiNii
  12. Nakamura, K.*
    Central circuitries for body temperature regulation and fever.
    Am. J. Physiol. 301:R1207–R1228, 2011. PubMed
  13. Nakamura, K.*
    Central neural control mechanism for brown fat thermogenesis.
    Journal of Japan Society for the Study of Obesity 17:87–95, 2011. [in Japanese] CiNii
  14. Nakamura, K.*
    Sympathetic efferent pathways from the hypothalamus.
    Jpn. J. Mol. Psychiatry 11:23–29, 2011. [in Japanese] CiNii
  15. Morrison, S.F.* & Nakamura, K.
    Central neural pathways for thermoregulation.
    Front. Biosci. 16:74–104, 2011. PubMed
  16. Nakamura, K.*
    Mechanism of body temperature regulation.
    Auton. Nerv. Syst. 47:281–286, 2010. [in Japanese] CiNii
  17. Nakamura, K.*
    Central circuitry mechanism for thermoregulation.
    Seitai no kagaku (Science of the Living Body) 61:276–285, 2010. [in Japanese] CiNii
  18. Romanovsky, A.A.*, Almeida, M.C., Garami, A., Steiner, A.A., Norman, M.H., Morrison, S.F., Nakamura, K., Burmeister, J.J. & Nucci, T.B.
    The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not.
    Pharmacol. Rev. 61:228–261, 2009. PubMed
  19. Morrison, S.F.*, Nakamura, K. & Madden, C.J.
    Central control of thermogenesis in mammals.
    Exp. Physiol. 93:773–797, 2008. PubMed
  20. Nakamura, K.*
    Sympathetic efferent neuronal pathways for fever and thermoregulation.
    Auton. Nerv. Syst. 43:44–51, 2006. [in Japanese] CiNii
  21. Nakamura, K.*, Matsumura, K., Kobayashi, S. & Kaneko, T.
    Sympathetic premotor neurons mediating thermoregulatory functions.
    Neurosci. Res. 51:1–8, 2005. PubMed
  22. Nakamura, K.*
    Fever-inducing sympathetic neural pathways.
    J. Therm. Biol. 29:339–344, 2004. DOI
  23. Negishi, M.*, Katoh, H., Nakamura, K., Aoki, J. & Fujita, H.
    Molecular aspects of functions of prostaglandin E receptors in CNS.
    Recent Res. Devel. Endocrinol. 1:133–143, 2000.

Book chapter

  1. Nakamura, K.
    Central mechanisms of thermoregulation and fever in mammals.
    In: Advances in Experimental Medicine and Biology (Thermal Biology), ed. by Tominaga, M., Takagi, M.: Springer Nature, Vol. 1461, Pages 141–159, 2024.
  2. Takahashi, M., Ishida, Y., Kataoka, N., Nakamura, K., Hioki, H.
    Efficient labeling of neurons and identification of postsynaptic sites using adeno-associated virus vector.
    In: Receptor and Ion Channel Detection in the Brain (2nd Ed)., ed. by Lujan R. and Ciruela F.: Humana, New York, NY., Neuromethods Vol. 169, Pages 323–341, 2021.
  3. Nakamura, K.
    Chapter 16 - Afferent pathways for autonomic and shivering thermoeffectors.
    In: Handbook of Clinical Neurology (Thermoregulation: From Basic Neuroscience to Clinical Neurology Part I), ed. by Romanovsky, A.A.: Elsevier, Vol. 156, Pages 263–279, 2018.
  4. Garami, A., Almeida, M.C., Nucci, T.B., Hew-Butler, T., Soriano, R.N., Pakai, E., Nakamura, K., Morrison, S.F. & Romanovsky, A.A.
    The TRPV1 channel in normal thermoregulation: What have we learned from experiments using different tools?
    In: Vanilloid Receptor TRPV1 in Drug Discovery: Targeting Pain and Other Pathological Disorders, ed. by Gomtsyan, A., Faltynek, C.R. & Hoboken, N.J.: John Wiley & Sons, 351–402, 2010.

Copyright (c) 2009-2025 Department of Integrative Physiology, Nagoya University Graduate School of Medicine