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ABSTRACT

To investigate the usefulness of texture analysis to discriminate between cervical lymph node (LN) 
metastasis from cancer of unknown primary (CUP) and cervical LN involvement of malignant lymphoma 
(ML) on unenhanced computed tomography (CT). Cervical LN metastases in 17 patients with CUP and 
cervical LN involvement in 17 patients with ML were assessed by 18F-FDG PET/CT. The texture features 
were obtained in the total cross-sectional area (CSA) of the targeted LN, following the contour of the 
largest cervical LN on unenhanced CT. Values for the max standardized uptake value (SUVmax) and 
the mean SUV value (SUVmean), and 34 texture features were compared using a Mann-Whitney U test. 
The diagnostic accuracy and area under the curve (AUC) of the combination of the texture features were 
evaluated by support vector machine (SVM) with nested cross-validation. The SUVmax and SUVmean did 
not differ significantly between cervical LN metastases from CUP and cervical LN involvement from ML. 
However, significant differences of 9 texture features of the total CSA were observed (p = 0.001 – 0.05). 
The best AUC value of 0.851 for the texture feature of the total CSA were obtained from the correlation 
in the gray-level co-occurrence matrix features. SVM had the best AUC and diagnostic accuracy of 0.930 
and 84.8%. Radiomics analysis appears to be useful for differentiating cervical LN metastasis from CUP 
and cervical LN involvement of ML on unenhanced CT.
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CSA: cross-sectional area
AUC: area under the curve
SVM: support vector machine
RFE: recursive feature elimination
GLCM: gray-level co-occurrence matrix features
GLRLM: gray-level run-length matrix features
NGLDM: neighborhood gray-level different matrix
GLZLM: gray-level zone length matrix
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INTRODUCTION

Enlarged cervical lymph nodes (LNs) have been reported to indicate malignancy in over 50% 
of cases.1,2 Cervical LN metastasis from head and neck carcinoma and cervical LN involvement 
of malignant lymphoma (ML) in the head and neck are the most common disease associated with 
cervical LN malignancy.2,3 Cancer of unknown primary (CUP) is defined as metastatic disease 
without evidence of a primary tumor on physical examination, endoscopy, or imaging. Cervical 
LN metastasis from CUP accounts for up to 7% of all head and neck carcinomas.4,5 Discrimina-
tion between cervical LN metastasis from CUP and cervical LN involvement of ML is challenging 
when the primary cancer in the head and neck is not detected on initial evaluation. Fine-needle 
aspiration/biopsy are performed to confirm tissue characteristics of cervical lymphadenopathy 
in cases of suspected malignancy. Diagnosis of ML requires sufficient tissue for histological, 
immunophenotypic, and genetic studies to identify the ML subtype and determine the optimal 
treatment strategy.6,7 In addition, patients with cervical LN enlargement might undergo random 
biopsy of the larynx and pharynx to identify the primary tumor site. Unfortunately, such invasive 
approaches are associated with a risk of complications and a possibility of insufficient materials.6-9

Computed tomography (CT) is performed to evaluate the presence of inflammation and 
metastasis, primary malignant tumor location, degree of extracapsular extension, and ML stage 
when cervical lymphadenopathy is identified clinically. The imaging findings for cervical LN 
metastasis from CUP and cervical LN involvement of ML on CT and magnetic resonance can 
be similar.10 Therefore, differentiating between cervical LN metastasis from CUP and cervical 
LN involvement of ML is currently challenging. Recently, artificial intelligence has been applied 
to medical imagings.11-17 Also, quantitative imaging analysis has been developed to improve 
diagnostic performance with increasing reproducibility and decreasing variability between radiolo-
gists. Texture analysis, a mathematical method used to calculate differences in gray-level patterns, 
has the potential to evaluate tumor characteristics, predict response to therapy, and determine 
prognosis in patients with malignant tumors.18-25 However, no previous studies have described 
the differentiation between cervical LN metastasis from CUP and cervical LN involvement of 
ML using texture analysis. Therefore, we hypothesized that CT-based texture features using 
machine learning can discriminate between cervical LN metastasis from CUP and cervical LN 
involvement of ML. The aim of this study is to investigate the diagnostic accuracy of texture 
analysis in differentiating cervical LN metastasis from CUP and cervical LN involvement of 
ML on unenhanced CT.
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MATERIALS AND METHODS

This retrospective study was approved by our institutional review board, which waived the 
need for informed consent from patients.

Subjects
Initially, 57 patients with histopathologically proven cervical LN metastasis from CUP (n=17) 

and ML (n=40) who underwent fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomog-
raphy (18F-FDG PET)/CT from April 2013 to April 2018 were identified.

Inclusion criteria for CUP with cervical LN metastasis
All patients with cervical LN metastases from CUP fulfilled the following inclusion criteria: 

1) a physical examination and nasal endoscopy by a otolaryngologist and an 18F-FDG PET/CT 
before treatment were performed and failed to identify the original cancer site; 2) metastases of 
enlarged cervical LN(s) were proven histopathologically by neck dissection or fine-needle biopsy; 
and 3) the treatment for CUP was ultimately performed based on the diagnosis of cervical LN 
metastasis from CUP, and on a discussion by otolaryngologists and radiologists. Because some 
patients were treated prior to implementation of the recommendation to evaluate Epstein-Barr 
virus (EBV) and human papilloma virus (HPV) infection status for occult cervical cancer,26 it 
was not necessary to evaluate EBV or HPV infection status for all patients.

Inclusion criteria for cervical LN involvement of ML
Seventeen patients were enrolled in this study based on the following criteria: 1) abnormal 

FDG uptake was visually identified in the enlarged cervical LN on 18F-FDG PET/CT and 2) 
ML was confirmed by fine-needle biopsy of the enlarged neck LNs.

FDG-PET/CT scanning
All patients who had fasted for at least 5 hours underwent whole-body 18F-FDG-PET/CT (the 

Biograph mCT-S(64)4R; Siemens Healthineers, Forchheim, Germany) from the vertex of the skull 
to the floor of the pelvis. 18F-FDG (3.7 MBq/kg BW, max 340MBq) was given intravenously. 
CT was performed 1 hour after 18F-FDG injection. The following scan parameters for the 64-row 
whole-body PET/CT scanner were used: tube voltage, 120 kVp; tube current, automatic exposure 
control (CARE Dose 4D); gantry rotation time, 0.5 sec; beam pitch, 1.5; imaging field of view, 
500 × 500 mm; matrix, 512 × 512; and slice thickness, 2mm. All images were reconstructed with 
a B31f kernel. PET data were reconstructed using a three-dimensional (3D) iterative algorithm 
of ordered subsets expectation-maximization (OSEM) (2 iterations, 21 subsets).

18F-FDG PET image analysis
All PET data were reviewed on a commercially available workstation (Syngo via VB10; 

Siemens Healthineers). The boundary of volume of interest (VOI) for PET was semi-automatically 
drawn by the workstation in the largest enlarged cervical LN. The maximum standardized uptake 
value (SUVmax: SUV of the highest count within the VOI) and the mean SUV value (SUVmean: 
SUV of the mean count within the VOI) were calculated automatically by the workstation.

Image segmentation and texture analysis
On the axial planes of the CT images, the texture features were analyzed in the total cross-

sectional area (CSA) of the target lesion. On each axial CT image, the regions of interest 
(ROIs) were placed to include the targeted LN. LNs were manually countered by consensus of 
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two radiologists (*blinded* and *blinded*, who had 7 and 19 years of experience in radiology, 
respectively) using LifeX Software (https://www.lifexsoft.com, CEA, Saclay, France).27 CT images 
with severe metal artifacts were not analyzed. Texture features were classified as follows: 4 
histogram features, 6 gray-level co-occurrence matrix (GLCM) features, 11 gray-level run length 
matrix (GLRLM) features, 2 neighborhood gray-level different matrix (NGLDM) features, and 
11 gray-level zone length matrix (GLZLM) features. A list of all texture features is provided 
in Appendix 1.

Statistical analysis
JMP 10.0.2 software (SAS Institute, Cary, NC, USA) was used for statistical analyses. Data 

were expressed as the mean ± standard deviation. A Mann-Whitney test was used to compare the 
SUVmax, SUVmean, and 34 texture features of the total CSA between the cervical LN metastases 
from CUP and the cervical LN involvement from ML. Receiver operating characteristic (ROC) 
curves and the area under the curve (AUC) of the ROC were calculated for each texture feature. 
A python-based support vector machine (SVM) with radial basis kernel in the machine learning 
library ‘scikit-learn’ (v0.16.1; http://scikit-learn.org) was implemented to evaluate accuracy and 
AUC for combinations of texture features with a nested cross-validation (10 repetition of 5-fold 
inner cross-validation and 10 repetition of 5-fold outer cross-validation) (Fig 1). A non-nested 
cross-validation has a bias that refers to the same data to optimize model parameters and evaluate 
model performances.28 In a nested cross-validation, different data between tuning parameters and 
evaluating model performances are used to avoid overfitting: 1) an outer 5-fold cross-validation 
splits all data into 4 training sets and 1 test set; 2) an inner 5-fold cross-validation splits the 
training data into another 4 training set and 1 test set; 3) parameters are tuned in an inner 
5-fold cross-validation that is repeated 10 times; 4) a remaining test set in an outer 5-fold 
cross-validation is used to evaluate SVM performance using the optimized parameters; and 5) 
the series of processes are performed in an outer 5-fold cross-validation, which is repeated 
10 times.29,30 The grid search method was used to select the optimized SVM parameters: C 
and gamma. The best combinations of the texture features were selected by a cursive feature 

Fig. 1 Machine learning using nested cross-validation
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elimination (RFE) method. RFE reduced the combination of texture features to specified number 
of top texture features according to importance.31 All p-values less than 0.05 were considered to 
indicate significant difference.

RESULTS

A total of 34 patients were included. Pretreatment characteristics of patients and tumors are 
shown in Table 1. Measurements of CT-related radiation dose were calculated by CT dose index 
(CTDI). The mean CTDIvol was 4.73±3.41 mGy.

Table 1 Characteristics of patients and tumors

CUP ML

Age mean±SD 65.9±3.5 64.6±14.4

Gender male/female 14/3 10/7

Histological types Pooly differenciated SCC 8 Diffuse large B-cell 
lymphoma

14

Moderate differenciated 
SCC

1 Adult T-cell lymphoma 2

Nonkeratinizing differenci-
ated SCC

1 angioimmunoblastic T-cell 
lymphoma

1

Sarcomatoid SCC 1

SCC;Undefined 6

Clinical stage I 0

II 3

III 1

IV 13

SD: standard deviation
CUP: cancer of unknown primary
ML: malignant lymphoma
SCC: squamous cell carcinoma

Comparisons of SUVmax and SUVmean between cervical LN metastasis from CUP and cervical 
LN involvement of ML

Table 2 shows the SUVmax and SUVmean measurements. The differences in SUVmax and 
SUVmean between cervical LN metastasis from CUP and cervical LN involvement of ML were 
not statistically significant.
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Table 2 Comparisons of SUVmax and SUVmean between cervical LN metastasis from CUP and  
cervical LN involvement of ML

Cervical LN metastasis 
from CUP

Cervical LN involvement 
from ML

Mean SD Mean SD p

SUVmax 16.01 4.42 17.06 9.43 0.718

SUVmean 9.72 3.19 10.43 5.84 0.877

LN: lymph node
SUV: standardized uptake value
CUP: cancer of unknown primary
ML: malignant lymphoma
SD: standard deviation

Comparisons of texture features between cervical LN metastasis from CUP and cervical LN 
involvement of ML

Measurements of 34 texture features and correlations between tumor voxel and texture features 
are shown in Appendix 2 and 3, respectively. Texture features that had a strong correlation coef-
ficient of >0.7 between tumor voxel were excluded to avoid influence of the confounding factor.32

Table 3 summarize the p-value, sensitivity, specificity, accuracy, and AUC of the selected 
texture features. Significant differences in 9 texture features in the total CSA that discriminated 
cervical LN metastases from CUP and cervical LN involvement from ML were observed. The 
highest AUC in the total CSA, which were obtained from the correlation in GLCM, were 0.851, 
respectively.

The highest AUC and accuracy by SVM were 0.930 and 84.8%, respectively, with a combina-
tion of the kurtosis in Histogram, the correlation in GLCM, and the coarseness in the NGLDM 
as shown in Table 4 and Fig 2. Fig 3 show representative cases in which differences between 
cervical LN metastasis from CUP and cervical LN involvement of ML were identified using the 
combination of texture features.

Table 3 AUC for selected texture features in the maximum cross-sectional area to discriminate between 
cervical LN metastasis from CUP and cervical LN involvement of ML

Cervical LN 
metastasis 
from CUP

Cervical LN 
involvement 

of ML

Mean SD Mean SD p
cut-
off

SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC

Histogram

Kurtosis 3.634 0.588 3.108 0.251 0.006* 3.24 82.4 76.5 79.4 0.844

Entropy 0.851 0.069 0.782 0.092 0.012* 0.82 70.6 70.6 70.6 0.753

Energy 0.169 0.029 0.195 0.041 0.020* 0.18 64.7 70.6 67.6 0.732

GLCM

Energy 0.031 0.012 0.042 0.019 0.025* 0.043 52.9 94.1 73.5 0.725

Correlation 0.193 0.074 0.092 0.058 0.001* 0.105 76.5 94.1 85.3 0.851

Entropy 1.673 0.142 1.538 0.185 0.019* 1.500 47.1 94.1 70.6 0.734
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NGLDM

Coarseness 0.002 0.005 0.009 0.012 0.001* 0.004 62.7 88.2 79.4 0.830

GLZLM

SZE 0.686 0.019 0.635 0.083 0.048* 0.665 58.8 82.3 73.5 0.689

HGZE 10874 119 10966 117 0.037* 11030 35.3 100 67.6 0.709

CUP: cancer of unknown primary
ML: malignant lymphoma
SD: standard deviation
SEN: sensitivity
SPE: specificity
ACC: accuracy
AUC: the area under the curve
GLCM: gray-level co-occurrence matrix
NGLDM: neighborhood gray-level different matrix
GLZLM: gray-level zone length matrix
SZE: short-zone emphasis
HGRE: high gray-level run emphasis
* indicates significant differences.

Table 4 The best AUC for the combination of texture features using SVM

SEN (%) SPE (%) ACC (%) AUC

Kurtosis in Histogram, Correlation in GLCM, 
and Coarseness in NGLDM

82.6 98.9 84.8 0.930

SEN: sensitivity
SPE: specificity
ACC: accuracy
AUC: the area under the curve
SVM: support vector machine
GLCM: gray-level co-occurrence matrix features
NGLDM: neighborhood gray-level different matrix
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Fig. 2 The ROC curves of the best combination of selected texture features

Fig. 3 A 70-year-old female with cervical LN involvement from ML
The correlation in the GLCM (0.018; cut-off values <0.110), the coarseness in the NGLDM (0.036; cut-off values 
>0.002), the kurtosis in the histogram (2.490; cut-off values <3.290), all derived from the total cross-sectional area, 
revealed true positives, while the SUVmax and SUVmean values were 9.88 and 6.02, respectively (A and B).
GLCM: gray-level co-occurrence matrix features
NGLDM: neighborhood gray-level different matrix
SZE: short-zone emphasis
GLZLM: gray-level zone length matrix
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DISCUSSION

This study demonstrates that 9 texture features of the total CSA of the enlarged cervical 
LNs on unenhanced CT, differentiated cervical LN metastases with CUP versus cervical LN 
involvement from ML; however, no significant differences in the SUVmax or SUVmean were 
observed. Thus, it can be considered that radiomics analysis might provide useful information 
for the differentiation of cervical lymphadenopathy between CUP and ML.

Head-and-neck CT for cervical lymphadenopathy has been performed to evaluate the location, 
abnormal internal architecture, extra-nodal metastasis, and primary site of malignant tumors. 
Notably, the necrotic components that have a key role in the evaluation of malignancy are 
frequently estimated by the enhancement pattern on a head-and-neck CT with contrast media.33,34 
On unenhanced CT, it is difficult to detect small changes in CT attenuation objectively; such 
changes are likely to be diagnosed based on radiologists’ impression. Several previous studies 
have demonstrated that texture analysis can be used to evaluate correlations between imaging 
findings on unenhanced CT and pathological findings and to differentiate between malignant 
and benign tumors.35-37 Cell proliferation, myxoid changes, abnormal angiogenesis, and necrotic 
changes within malignant tumors result in heterogeneity.37 Central necrosis in cervical LNs that re-
flects reduced CT attenuation is recognized as indicating metastasis.36,39 Furthermore, ML appears 
as isoattenuation in a homogenous mass.39 Nodal lymphoma is characterized by high cellularity, 
large nuclei, and less extracellular space than well or moderate differentiated carcinomas.34,41 In 
the present study, unenhanced CT-based quantitative analysis of texture features could be used to 
differentiate between cervical LN metastases from CUP and cervical LN involvement from ML. 
Texture features related to randomness, such as entropy in the GLCM, in cases with cervical 
LN metastases from CUP were higher than those with cervical LN involvement from ML and 
the coarseness in the NGLDM related to homogeneity was lower. Some texture features could 
depict the gray-level differences between cervical LN metastasis from CUP and cervical LN 
involvement of ML on unenhanced CT.

Unenhanced CT was performed with a low radiation dose in the current study. Reduced radia-
tion doses lead to decreased image quality due to a decrease in photons. However, unenhanced 
low-dose CT might be useful for quantifying enlarged cervical LN. A previous study reported 
that CT-based texture analysis is not affected by changes in tube current on CT in a phantom 
study; thus, findings support the present results.42

This study has some limitations. First, we had a small number of patients in this retrospective 
and single institutional study. Second, occult EBV-related nasopharyngeal cancers and occult 
HPV-related oropharyngeal cancers were not excluded due to the inclusion of patients who were 
treated before the recommendation to evaluate EBV and HPV infection status was implemented. 
Third, the ROIs for the cervical LNs were manually delineated. Fourth, the degree of aggres-
siveness of each ML was not evaluated. Ganshan et al suggested the possibility that CT-based 
texture analysis for ML may be correlated with fibrosis, which appears in a variety of patterns 
in ML subtypes.42 Necrosis within adult T-cell lymphoma lesions has previously been described 
to be correlated with poor prognosis.43 The aggressiveness of ML can affect texture analysis. 
Therefore, further large-scale studies that evaluate more parameters and classify ML based on 
the degree of aggressiveness are required.

In conclusion, CT-based texture analysis can distinguish cervical LN metastasis from CUP 
and enlarged cervical LNs in ML, while the SUVmax and SUVmean cannot differentiate them. 
Quantitative analysis of texture features on unenhanced CT has the potential to provide additional 
information about patients with malignant cervical lymphadenopathy.
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Appendixes

Appendix 1

1. Histogram features
Histogram features consist of simple statistics that are associated with pixel values in images 

while spatial patterns of pixel values are not included. Skewness, kurtosis, entropy, and energy 
were calculated.

2. Gray-level co-occurrence matrix (GLCM) features
GLCM is defined as the distribution of co-occurring pixel values that are calculated from 4 

directions in 2-dimentional space (2D) or 13 directions in 3-dimentional space (3D):

Homogeneity =  

Energy = 

Contrast = 

Correlation = 

Entropy = 

Dissimilarity = 

Where p(i,j) represents (i,j) value of the GLCM.

3. Gray-level run-length matrix (GLRLM) features
The GLRLM means the number of the consecutive pixels of the same gray-level value for 4 

directions in 2D or 13 directions in 3D:

Short run emphasis (SRE) = 

Long run emphasis (LRE) = 

Low gray-level run emphasis (LGRE) = 

High gray-level run emphasis (HGRE) = 
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Short run low gray-level emphasis (SRLGE) = 

Short run high gray-level emphasis (SRHGE) = 

Long run low gray-level emphasis (LRLGE) = 

Long run high gray-level emphasis (LRHGE) = 

Gray-level non-uniformity (GLNU) = 

Run-length non-uniformity (RLNU) = 

Run percentage (RP) = 

Where nr corresponds to the number of homogenous runs.

4. Neighborhood gray-level different matrix (NGLDM)
NGLDM means the difference of gray levels between adjacent voxels of 8 in 2D and 26 in 

3D:

Coarseness = 

Contrast = 

Where E is the number of voxels in VOI and G is the number of gray levels.

5. Gray-level zone length matrix (GLZLM)
GLZLM means the number of homogenous zones of the same gray-level value in 2D or 3D:

Short-zone emphasis (SZE) = 

Long-zone emphasis (LZE) = 

Low gray-level zone emphasis (LGZE) = 
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High gray-level zone emphasis (HGZE) = 

Short-zone low gray-level emphasis (SZLGE) = 

Short-zone high gray-level emphasis (SZHGE) = 

Long-zone low gray-level emphasis (LZLGE) = 

Long-zone high gray-level emphasis (LZHGE) = 

Gray-level non-uniformity for zone (GLNU) = 

Zone-length non-uniformity (ZLNU) = 

Zone percentage (ZP) = 

where nr corresponds to the number of homogenous zones.
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Appendix 2 Comparisons of texture features in the total cross-sectional area between cervical LN metastasis 
from CUP and cervical LN involvement of ML

Mean SD Mean SD p

Histogram

Skewness 0.091 0.206 0.044 0.129 0.352

Kurtosis 3.634 0.588 3.108 0.251 0.006*

Entropy 0.851 0.069 0.782 0.092 0.012*

Energy 0.169 0.029 0.195 0.041 0.020*

GLCM

Homogeneity 0.490 0.044 0.510 0.052 0.168

Energy 0.031 0.012 0.042 0.019 0.025*

Contrast 4.934 1.538 4.326 2.106 0.153

Correlation 0.193 0.074 0.092 0.058 0.001*

Entropy 1.673 0.142 1.538 0.185 0.019*

Dissimilarity 1.704 0.301 1.573 0.375 0.174

GLRLM

SRE 0.873 0.029 0.873 0.029 0.890

LRE 1.718 0.237 1.706 0.226 0.877

LGRE 0.000 0.000 0.000 0.000 –

HGRE 10874 145 10976 117 0.052

SRLGE 0.000 0.000 0.000 0.000 –

SRHGE 9493 359 9585 293 0.380

LRLGE 0.000 0.000 0.000 0.000 –

LRHGE 18666 2561 18744 2560 0.904

GLNU 1396 909 482 874 0.001*

RLNU 6077 3831 1852 3039 0.001*

RP 0.833 0.038 0.835 0.038 0.809

NGLDM

Coarseness 0.002 0.005 0.009 0.012 0.001*

Contrast 0.032 0.012 0.051 0.021 0.002*

GLZLM

SZE 0.686 0.019 0.635 0.083 0.048*

LZE 17722 16650 6004 13327 0.003*

LGZE 0.000 0.000 0.000 0.000 –

HGZE 10874 119 10966 117 0.037*

SZLGE 0.000 0.000 0.000 0.000 –

SZHGE 7461 183 6967 939 0.209

LZLGE 1.629 1.527 0.529 1.223 0.002*

LZHGE 192145048 181187876 66039249 146795908 0.003*

GLNU 121 69 48 74 0.001*

ZLNU 455 295 136 196 0.001*

ZP 0.112 0.038 0.126 0.045 0.352

* indicates significant differences.
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Appendix 3 Correlations between texture features and tumor voxels

p

Histogram

Skewness 0.413

Kurtosis 0.200

Entropy 0.129

Energy –0.116

GLCM

Homogeneity 0.043

Energy –0.142

Contrast –0.083

Correlation 0.575

Entropy 0.167

Dissimilarity –0.067

GLRLM

SRE –0.325

LRE 0.328

LGRE 0

HGRE –0.434

SRLGE 0

SRHGE –0.470

LRLGE 0

LRHGE 0.280

GLNU 0.987 *

RLNU 0.991 *

RP –0.356

NGLDM

Coarseness –0.477

Contrast –0.636

GLZLM

SZE 0.457

LZE 0.865 *

LGZE 0

HGZE –0.329

SZLGE 0

SZHGE 0.413

LZLGE 0.871 *

LZHGE 0.861 *

GLNU 0.981 *

ZLNU 0.947 *

ZP –0.502

* indicates correlations of more than 0.7 between texture features and tumor volume.
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