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ABSTRACT

Abnormalities in the regulation of gene expression are associated with various pathological conditions. 
Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a 
central role in the formation of cell type–specific gene expression patterns. Super-enhancers are a subclass 
of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding 
of master transcription factors and Mediator complexes and high signals of active histone marks. Super-
enhancers have been studied in detail as important regulatory regions that control cell identity and contribute 
to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating 
various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in 
cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the 
dysregulation of transcription factors and the super-enhancer–associated genomic abnormalities. The study of 
super-enhancers could contribute to the identification of effective biomarkers and the development of cancer 
therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers 
in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer 
alteration mechanisms have been reported. 
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INTRODUCTION

Recent advanced sequencing technologies in cancer research enable the establishment of a 
complete registry of recurrent mutational targets. These technologies also enable analysis of the 
molecular basis of epigenetic regulation in cancer cells, which includes DNA methylation, histone 
modification, and higher-order chromatin structure regulation. A better understanding of this mo-
lecular basis has greatly expanded knowledge of cancer-associated alterations in gene expression 
programs. Among genomic distal regulatory elements, enhancer-mediated activation of target genes 
is key to the establishment of cell type–specific gene expression patterns. Enhancers are genomic 
regions that are bound by transcription factors (TFs) and transcriptional coactivators to promote 
gene transcription. Enhancers regulate spatiotemporal gene expression patterns through chromatin 
looping-based interactions with target promoters. In general, ~10,000 putative enhancers can be 
identified in a single cell type. Among them, a subset of enhancer regions near cell type–specific 
genes contains multiple putative enhancers densely bound by master TFs and transcriptional 
coactivators, including the Mediator complex and bromodomain-containing protein 4 (BRD4).1 
This enhancer subclass, called super-enhancers, was distinguished from typical enhancers in a 
study reanalyzing standard chromatin immunoprecipitation sequencing (ChIP-seq) datasets.1 

Super-enhancers have been studied in detail as important regulatory regions that control 
cell identity and contribute to the pathogenesis of diverse diseases.2,3 In the field of cancer 
biology, super-enhancers activate various oncogenes and other cancer-related genes and shape 
characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activity in 
cancer involve multiple mechanisms, including TF dysregulation and super-enhancer–associated 
genomic abnormalities. TF dysregulation includes the generation of aberrant chimeric TFs and the 
altered expression, function, stability, and crosstalk of transcriptional regulators. Some genomic 
abnormalities in cancer, such as translocations, amplifications, and insertions, can be considered 
examples of super-enhancer dysregulation. A better understanding of super-enhancers could 
enable the identification of effective biomarkers and the development of therapeutics targeting 
transcriptional addiction.4-6 Here, we review the roles of super-enhancers in cancer, particularly 
in hematopoietic malignancies, in which various super-enhancer alteration mechanisms have been 
documented.

DEFINITION AND COMPILATION OF SUPER-ENHANCERS

The concept of super-enhancers was proposed by Richard A. Young and colleagues in 2013 
after they reinterpreted the ChIP-seq results of master TFs, Mediator complexes, and histone 
modifications (H3K27ac) in mouse embryonic stem cells (mESCs).1 In the original study, super-
enhancers were identified in mESCs via the following steps: (1) Putative enhancer sites bound 
by all three master TFs, Oct4, Sox2, and Nanog, were identified. (2) Enhancer peaks within 
12.5 kb were stitched. (3) Stitched enhancer regions were then ranked according to the ChIP-seq 
signal of the Mediator complex component MED1. (4) The MED1 signal was plotted against the 
enhancer rank, and super-enhancers were distinguished from typical enhancers by identifying the 
inflection point of the curve. The computational pipeline is called Rank Ordering of SE (ROSE). 
In mESCs, approximately 40% of the MED1 signal associated with enhancers was found in 231 
super-enhancer domains among ~10,000 enhancer regions. 

Based on the substantial overlap between Oct4, Sox2, Nanog, and MED1-defined super-
enhancers and H3K27ac-defined super-enhancers, H3K27ac ChIP-seq datasets have been widely 
used to identify super-enhancers in various cell types.2 Other cell type–specific TFs or transcrip-
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tional coactivators, such as MED1 and BRD4, have also been used as surrogate markers.7,8 While 
~10,000 enhancers can be identified per cell type, approximately 200 to 800 super-enhancers 
are typically identified. Super-enhancers are frequently found in the vicinity of cell type–specific 
genes, including those encoding cell type–specific master TFs (eg, Oct4, Sox2, and Nanog in 
mESCs), and are associated with high levels of target gene expression. In addition, a small subset 
of cell type-specific microRNAs (miRNAs), whose expression and function are highly dominant 
in each cell type, is frequently associated with super-enhancers.9 

Information on super-enhancers in various ChIP-seq datasets is currently available in several 
databases, such as dbSUPER (https://asntech.org/dbsuper/), SEdb (http://www.licpathway.net/sedb/), 
SEanalysis (licpathway.net/SEanalysis/), and SEA (http://sea.edbc.org/).10-14 These databases provide 
resources for investigating the relationships among super-enhancers, target genes, TF association, 
and disease-associated single nucleotide polymorphisms (SNPs). 

MOLECULAR FEATURES OF SUPER-ENHANCERS

Super-enhancers are co-occupied by various TFs crucial for the relevant cell type and oc-
cupied by high levels of transcriptional regulators, including Mediator, p300, CBP, BRD4, RNA 
polymerase II (RNA Pol II), cohesin, and chromatin remodelers (Figure 1).2 Recently developed 
platforms for super-enhancer prediction based on machine learning and convolutional neural 
networks have demonstrated that several components, including H3K27ac, MED1, MED12, BRD4, 
p300, CDK7, CDK8, and CDK9, are important factors that characterize super-enhancers.15,16 

Fig. 1  Comparison of typical enhancers and super-enhancers
Super-enhancers are enriched with more transcription factors, Mediator complexes, and RNA Pol II molecules 
than typical enhancers. Hence, super-enhancers have higher transcription activity levels than typical enhancers. 
Super-enhancers activate cell identity–related gene expression programs. 
TF: transcription factor
Pol II: RNA polymerase II
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Among these coactivators, the Mediator complex plays a central role in super-enhancer 
function and cell identity control by mediating enhancer-promoter communication and RNA Pol 
II transcription.17,18 BRD4 is another key player in super-enhancer function and a bromodomain 
and extraterminal (BET) domain protein family member that binds to histone acetylated lysines.19 
BRD4 contributes to cell type–specific gene expression by preferentially binding to activated 
enhancers and activating the target promoters; the primary functions of BRD4 are promoting RNA 
Pol II phosphorylation and mediating RNA Pol II pause release and elongation.20,21 Recent studies 
have demonstrated that BRD4 interacts with multiple factors associated with 5'-elongation control 
and 3'-RNA processing.22,23 Additionally, BRD4 supports recruitment of 3'-RNA processing factors 
during a 5'-elongation checkpoint.22,23 Overall, these observations are consistent with reports that 
super-enhancer–associated genes have low levels of transcriptional pausing, suggesting that high 
transcription levels are achieved by rapid pause release, despite stronger recruitment of RNA 
Pol II.24,25 This would also explain the exquisite sensitivity of super-enhancer–associated genes 
to inhibition of CDK7, which regulates multiple transcription steps by promoting RNA Pol II 
phosphorylation.26-28 

A series of recent studies have suggested the involvement of liquid-liquid phase separation 
(LLPS) processes in the formation and activity of super-enhancers.29,30 In recent years, LLPS 
has attracted attention as the main principle underlying the organization of diverse membrane-
less organelles, collectively called “biomolecular condensates,” within the cell.31 Intracellular 
condensate formation is mediated by cooperative interactions among multivalent molecules, such 
as RNA, DNA, and intrinsically disordered regions (IDRs) in proteins.31 Such cooperatively has 
been documented in the enhancer biology as various TFs cooperatively bind to and activate 
enhancers.7,8 In addition, functional studies of super-enhancers have highlighted that multiple 
enhancer-like elements within super-enhancers act cooperatively.9,32,33 Together with imaging stud-
ies showing clustering of multiple RNA Pol II molecules, these findings led to the proposal of a 
phase separation (transcriptional condensate) model. In this model, multiple enhancer-like elements 
and associated multivalent proteins, such as TFs, Mediator, BRD4, and RNA Pol II, facilitate 
phase-separated multimolecular assembly and compartmentalized transcription reactions.29,30,34 
This concept has been supported by subsequent studies showing the widespread LLPS capacity 
of transcriptional regulators, including RNA Pol II, Mediator, BRD4, and various TFs.35-38 In 
addition, alterations in biomolecular condensates have multiple roles in cancer pathogenesis.39

ROLES OF SUPER-ENHANCERS IN CANCER

Super-enhancers play a central role in cell type–specific gene expression programs and are 
involved in the pathogenesis of a wide variety of tumors. Cancers of different tissue origins 
and the different subtypes exhibit specific gene expression patterns, which are associated with 
prognosis and distinct biological behaviors, including drug resistance. As changes in enhancer 
elements reportedly drive a specific transcriptional program in cancer,40,41 super-enhancers con-
tribute to characteristic gene expression patterns in cancer cells by activating various oncogenes 
and modulating other cancer-related genes. Compared to normal cells, cancer cells have altered 
super-enhancer usage patterns, which are partly responsible for the activation of various oncogenes 
and other genes associated with “hallmarks of cancer”.2 Super-enhancers drive the expression 
of not only protein-coding genes but also non-coding RNAs in cancer cells. A comprehensive 
comparison of super-enhancers between normal cells and cancer cells showed that cancer cells 
exhibit the formation of super-enhancers associated with cancer-promoting miRNAs and the loss 
of super-enhancers associated with cancer-suppressing miRNAs.9 An analysis using The Cancer 
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Genome Atlas (TCGA) database showed that high expression of cancer-promoting miRNAs 
along with super-enhancer formation correlates with poor prognosis in certain cancer types.9 In 
addition, several super-enhancer–driven long non-coding RNAs (lncRNAs) contribute to cancer 
pathogenesis.42-45 

Alterations in super-enhancer activities in cancer involve multiple mechanisms, including 
dysregulation of transcriptional regulators and super-enhancer–associated genomic abnormalities. 
These events have been referred to as “enhancer hijacking”. Transcriptional regulator dysregulation 
includes the generation of aberrant chimeric TFs; altered expression, function, and stability of 
transcriptional regulators; and altered crosstalk among various transcriptional regulators. Some 
super-enhancer–associated genomic abnormalities, such as translocations, amplifications, and 
insertions, can be recognized as super-enhancer dysregulation mechanisms. In the following 
sections, we summarize findings regarding the mechanisms of super-enhancer dysregulation in 
hematological malignancies. These mechanisms include transcriptional regulator abnormalities that 
accumulate in enhancers and genomic abnormalities of enhancers themselves.

DYSREGULATION OF SUPER-ENHANCERS BY ABNORMALITIES IN  
TRANSCRIPTIONAL REGULATORS

The hundreds of genes regulated by super-enhancers often include those encoding master TFs 
and transcriptional regulators that define the characteristics of each cell type. This is also the case 
in hematological malignancies. Examples of super-enhancer–associated TFs and transcriptional 
regulators in various hematological malignancies include OCA-B (POU2AF1), BCL6, PAX5, and 
IRF8 in diffuse large B-cell lymphoma (DLBCL); PAX5 in chronic lymphocytic leukemia (CLL); 
HOXA cluster, HOXB cluster, and MEIS1 in NPM1-mutated acute myeloid leukemia (AML); 
BATF3 and IRF4 in adult T-cell leukemia-lymphoma (ATLL); and TCF4 in blast plasmacytoid 
dendritic cell neoplasm (BPDCN).46-50 These TFs serve as the core of the transcriptional network 
in each tumor type. In addition, super-enhancer–activated TOX, an HMG box–containing pro-
tein, regulates the proliferation and non-homologous end joining (NHEJ) repair in T-cell acute 
lymphoblastic leukemia (T-ALL).51 

Abnormalities in transcriptional regulators can be recognized as a combination of the follow-
ing mechanisms: (1) production of chimeric TFs; (2) altered expression, function, and stability 
of transcriptional regulators; and (3) altered crosstalk among transcriptional regulators. These 
mechanisms have been reported in hematological malignancies (Figure 2). 

The first scenario, production of chimeric TFs, is frequently observed in hematological ma-
lignancies. The TCF3-HLF chimeric TF in pediatric acute lymphoblastic leukemia (ALL) binds 
to the HLF binding sites in hematopoietic stem cell/myeloid lineage-associated super-enhancers 
and activates a conserved MYC-driven transformation program.52 Inhibition of p300 decommis-
sions TCF3-HLF enhancer programs and exerts a profound anti-leukemic effect. In pediatric 
acute megakaryoblastic leukemia (AMKL), the ETO2-GLIS2 chimeric TF also accumulates in 
the super-enhancers of leukemic cells.53 The binding sites of ETO2-GLIS2 are enriched with 
the DNA-binding motifs of GLIS2 and several known ETO2 partners, including ERG (ETS), 
GATA, and RUNX. Importantly, more than 50% of the binding sites are not bound by ETO2 
partners in normal cells, suggesting that the chimeric TFs bind to specific, novel sites in cancer 
cells.53 The importance of such altered TF properties has been reinforced by recent reports that 
NUP98-fusion chimeric TFs in pediatric AML have altered condensate formation properties 
to drive leukemogenic gene expression.54,55 In addition, CBFβ-SMMHC, found in AML with 
chromosome 16 inversion, inhibits the function of RUNX1, a master TF in the hematopoietic 
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system, and neutralizes RUNX1-mediated repression of MYC expression.56

As the second and third scenarios, multiple cancer types have been frequently associated with 
alterations in the expression of oncogenic TFs, mutations in transcriptional regulators, and altered 
functional crosstalk. AML is often associated with elevated HOXA9 expression, which contributes 
to leukemogenesis by driving the activity of de novo enhancers characteristic of leukemic 
cells, including super-enhancers.57 The pseudokinase TRIB1, a myeloid oncoprotein, modulates 
HOXA9-bound super-enhancers by suppressing C/EBPα p42, and accelerates HOXA9-induced 
leukemia onset.58 The NUP214-ABL1 fusion kinase found in ALL promotes the cooperative 
binding of TLX1 and STAT5 to enhancers and activates key proto-oncogenes, such as MYC and 
BCL2.59 Loss-of-function mutations in CREBBP acetyltransferase and its paralogue p300, which 
accumulate in super-enhancers, are highly frequent in follicular lymphoma (FL) and DLBCL.60 
Mutations in CREBBP have been suggested to affect the function of the transcriptional repressor 
BCL6 and gene regulation in the germinal center, which is controlled by super-enhancers.60 In 
addition, FL and DLBCL are associated with frequent mutations in MEF2B, a TF that similarly 
accumulates in germinal center-specific super-enhancers.61 Mutations in MEF2B have been sug-
gested to perturb gene expression by decreasing the DNA-binding capacity and protein stability 
of MEF2B, as well as by evading negative regulation via the HUCA complex.61 Viral-associated 
tumorigenesis could also be associated with alterations in super-enhancers; in primary effusion 
lymphoma (PEL), Kaposi’s sarcoma-associated herpesvirus (KSHV)-driven TF, viral interferon 
regulatory factor 3 (vIRF3), reportedly drives super-enhancer–mediated survival gene expression 

Fig. 2  Dysregulation of super-enhancers by abnormalities in transcription factors and transcriptional regulators
Abnormalities in transcriptional regulators reported in hematological malignancies are categorized as a combina-
tion of mechanisms, including (1) production of chimeric TFs, (2) altered expression, function, and stability 
of transcriptional regulators, and (3) altered crosstalk among various transcriptional regulators. Abnormalities 
in transcriptional regulators result in dysregulation of super-enhancers observed in normal cells (black) and/or 
formation of novel super-enhancer near oncogenes (red).
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programs in cooperation with host TFs, such as IRF4 and BATF.62,63 
Super-enhancers are also enriched with cohesin complexes, which mediate enhancer-promoter 

communication.2 STAG2, a gene encoding a cohesin subunit, is frequently mutated in myeloid 
neoplasms along with other genes, such as RUNX1, SRSF2, and ASXL1.25 In mice, the combined 
loss of Stag2 and Runx1 synergistically attenuates enhancer-promoter loops, particularly at 
sites with enriched levels of RNA Pol II and Mediator, and causes myelodysplastic syndromes 
(MDS).25 Super-enhancer–associated genes in hematopoietic stem/progenitor cells (HSPCs) are 
downregulated upon single knockout of Stag2 and double knockout of Stag2 and Runx1. In 
addition to super-enhancer perturbation, downregulation of genes with high basal transcriptional 
pausing, which are important for HSPC regulation, has also been observed in Stag2 single and 
double knockout mice. Downregulation of high-pausing genes has been confirmed in samples of 
primary leukemia with STAG2/cohesin mutations.25

DYSREGULATION OF SUPER-ENHANCERS BY GENOMIC ABNORMALITIES

In addition to aberrant transcriptional networks, a variety of genomic abnormalities, including 
translocations, inversions, amplifications, and insertions/deletions, can cause aberrant super-
enhancer formation near oncogenes in cancer cells (Figure 3). 

In well-known oncogenes such as MYC and N-MYC, different abnormalities cause aberrant 
super-enhancer formation and oncogene dysregulation in different cancer types.2 In malignant 
lymphomas, some chromosomal translocations reposition super-enhancers at immunoglobulin loci 
in proximity to MYC, leading to high MYC expression levels (Figure 3A). In AML, transloca-
tions or inversions of chromosome 3 reposition a distal GATA2 enhancer so that it ectopically 
activates EVI1 oncogene through translocation-derived super-enhancers and simultaneously confers 
GATA2 haploinsufficiency.64,65 This type of “enhancer hijacking” event has been reported in 
solid tumors, such as medulloblastoma, adenoid cystic carcinoma, and thyroid cancer, in recent 
years.66-68 A high-throughput approach for the simultaneous detection of enhancer activity and 
chromosome rearrangements, called pinpointing enhancer-associated rearrangements by chromatin 
immunoprecipitation (PEAR-ChIP), has been used to identify various rearrangements, including 
translocations and interchromosomal deletions, that involve known cancer-associated genes, 
including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1.69 PEAR-ChIP has 
also been used to identify novel enhancer duplication events and lymphoma subtype–specific 
enhancers at the MYC locus.69 

In some cases of ALL and AML, MYC is activated by focally amplified super-enhancers in the 
3’ region (Figure 3B).70,71 Focally amplified lineage-specific super-enhancers of MYC and other 
genes have also been identified in human epithelial cancers.72 Super-enhancers typically contain 
multiple discrete enhancer RNA (eRNA) loci. The eRNA loci are regulated by evolutionarily 
conserved, well-positioned nucleosomes and are frequently dysregulated in cancer.73 Pan-cancer 
analysis of the eRNA loci in super-enhancers has revealed that super-enhancers are globally 
activated in many cancers and that a substantial portion of eRNA loci is affected by somatic 
copy number alteration and CpG methylation in human cancers.73

In addition to chromosomal aberrations, mutations in super-enhancer regions are an important 
genomic aberration scenario (Figure 3C). In a subset of T-ALL, a short base insertion occurs 
upstream of the TAL1 oncogene.74 This mutation creates a binding sequence for the MYB TF, 
which induces the binding of various other TFs and the formation of super-enhancers, leading 
to TAL1 activation.74 Other cancer-associated mutations in enhancers and CTCF binding sites 
have gradually been revealed by recent studies.75,76 A recent integrative analysis, which combined 
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targeted resequencing of hematopoietic lineage–associated cis-regulatory elements (CRE) with 
CRISPR/dCas9-based perturbation screening, comprehensively identified recurrently mutated 
oncogenic and tumor suppressive CREs in AML, lymphoma, and ALL.77 This study demonstrated 
that CRE variants at KRAS and PER2 enhancers reside in proximity to the binding sites of nuclear 
receptors (NRs), affecting responsiveness to NR signaling and expression levels of target genes. 
Furthermore, the colocalization of CRE and NR binding sites was shown to be widespread.77

POTENTIAL OF CANCER THERAPY VIA SUPER-ENHANCER INHIBITION

The super-enhancer concept is partially based on the observation that cell identity maintenance 
in mESCs is highly sensitive to inhibition of the transcriptional coactivator Mediator and cohesin 
complex, as well as to perturbation of master TFs.78 A similar high dependency on transcriptional 

Fig. 3  Dysregulation of super-enhancers by genomic aberrations
Fig. 3A: � Translocations, inversions, and interchromosomal deletions rearrange the positional relationships between 

super-enhancers and proto-oncogenes, leading to abnormal transcription and cancer development. 
Fig. 3B–3C: � Other mechanisms include focal amplifications of super-enhancer regions (B), point mutation, or 

small insertions or deletions (indels) that create new super-enhancers (C). These mechanisms can 
also increase transcriptional output and perturb the regulation of oncogenes.
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regulators for survival is frequently observed in cancer cells (“transcriptional addiction”), and this 
is generally consistent with the super-enhancer concept.79-81 Several drugs targeting super-enhancer 
components have been shown to affect the transcriptional machinery of cells and produce anti-
tumor effects (Figure 4).

JQ1, I-BET151 (GSK1210151A), and other bromodomain inhibitors selectively bind to 
bromodomains and exert anti-cancer effects in a wide range of hematological malignancies, 
including AML, ALL, multiple myeloma, Burkitt lymphoma, and other tumor types.82-89 Early 
studies have shown that bromodomain inhibitors elicit anti-tumor effects by selectively inhibit-
ing the MYC oncogene. Later, these gene-specific selective effects were partly explained by 
the preferential targeting of super-enhancers associated with MYC, other key oncogenes, and 
lineage-specific TFs in cancer cells.3,90 As described earlier, BRD4 plays important roles in 
transcriptional pause release, 3'-end processing, and transcriptional termination. Mechanisms 
of resistance to bromodomain inhibitors have been also reported.91-93 Another super-enhancer-
targeting drug, THZ1, is a covalent inhibitor of CDK7, CDK12, and CDK13 that selectively kills 
cancer cells by inhibiting super-enhancer–induced oncogenic transcription.27 Anti-tumor activities 
of THZ1 have been reported in multiple tumor types, including hematological malignancies, 
MYCN-driven neuroblastomas, small cell lung cancer (SCLC), triple-negative breast cancer, and 
esophageal squamous cell carcinoma.27,94-97 THZ1 inhibits phosphorylation of the carboxyl-terminal 
domain (CTD) of RNA Pol II and attenuates multiple transcription processes, including capping, 
pausing, and productive elongation.28 A recent combined analysis of drug sensitivity and gene 
dependency screens unexpectedly revealed that small-cell neuroendocrine cancers (SCNC) and 
hematological malignancies have common gene expression profiles, protein expression profiles, 
and drug sensitivity profiles. This study also showed that CDK7 inhibition is more effective in 
SCLC and blood cancers than in other tumor types.98 This is consistent with other reports show-
ing that THZ1 is highly effective at perturbing super-enhancers in these tumor types.27,95 These 
transcription-perturbing drugs are currently being evaluated in several phase I/II clinical trials.81

While the inhibition of super-enhancers is a promising approach in multiple cancer types, the 
potential side effects and off-target effects have not been fully explored. Because the inhibition 
of super-enhancers in cancer cells also affects super-enhancers in normal cells, it is necessary 

Fig. 4  Therapeutic targeting of super-enhancers in cancers
The discovery of JQ1 and other bromodomain inhibitors, as well as the preferential targeting of super-enhancers, 
has led to the development of several first- and second-generation bromodomain inhibitors. CDK7 (CDK12/
CDK13) is also attracting attention as a target for cancer therapy; CDK7 inhibitors have been reported to be 
effective against various types of cancer. 
BETi: bromodomain and extraterminal domain inhibitor
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to further investigate transcriptional addiction mechanisms in cancer cells and identify selective 
targets. TAF12, a subunit of TFIID and SAGA coactivator complexes, has been identified as 
a target that selectively regulates AML progression.99 Peptide-based squelching of TAF12 and 
MYB interactions has been shown to exhibit potent anti-leukemia effects without harming normal 
tissues.99 Similarly, given that different TFs downstream of distinct signaling pathways interact 
with different Mediator subunits,17 targeting context-dependent interactions of super-enhancer 
components may also be promising. In addition, it has been reported that super-enhancers are 
prone to double-strand breaks and susceptible to defects in cellular DNA repair mechanisms.100 
Therefore, the combined use of super-enhancer inhibitors and drugs targeting DNA damage repair 
mechanisms may improve anti-tumor effects.

CONCLUSIONS

In this review, we summarized the roles of super-enhancers in cancer, especially in hemato-
poietic malignancies. Super-enhancers are useful tools for understanding cancer-specific gene and 
miRNA expression mechanisms and have potential as therapeutic targets. In addition, alterations 
in super-enhancer activities in cancer involve multiple mechanisms, including dysregulation 
of transcriptional regulators and super-enhancer–associated genomic abnormalities. Targeting 
super-enhancers is a promising therapeutic strategy. However, the development of methodologies 
for targeting super-enhancers more selectively will require a deeper understanding of the basic 
molecular mechanisms.
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