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ABSTRACT

Differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma (ML) remains 
challenging on cross-sectional images. The aim of this study is to investigate the usefulness of texture 
features on unenhanced CT for differentiating between nasopharyngeal cancer and nasopharyngeal ML. 
Thirty patients with nasopharyngeal tumors, including 17 nasopharyngeal cancers and 13 nasopharyngeal 
MLs, were underwent 18F-FDG PET/CT. All nasopharyngeal cancers and 7 of 13 nasopharyngeal MLs 
were confirmed by endoscopic biopsy. On unenhanced CT, 34 texture features were analyzed following 
lesion segmentation in the maximum area of the target lesion. The Mann-Whitney U test and areas under 
the curve (AUCs) were used for analysis and to compare the maximum standardized uptake values (SUV)
max, SUVmean, and 34 texture features. A support vector machine (SVM) was constructed to evaluate 
the diagnostic accuracy and AUCs of combinations of texture features, with 50 repetitions of 5-fold cross-
validation. Differences between the SUVmax and SUVmean for nasopharyngeal cancers and nasopharyngeal 
MLs were not significant. Significant differences of texture features were seen, as follows: 1 histogram 
feature (p = 0.038), 3 gray-level co-occurrence matrix features (p < 0.05), and 1 neighborhood gray-level 
different matrix feature (NGLDM) (p = 0.003). Coarseness in NGLDM provided the highest diagnostic 
accuracy and largest AUC of 76.7% and 0.82, respectively. SVM evaluation of the combined texture features 
obtained the highest accuracy of 81.3%, with an AUC of 0.80. Combined texture features can provide useful 
information for discriminating between nasopharyngeal cancer and nasopharyngeal ML on unenhanced CT.
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NGLDM: neighborhood gray-level different matrix
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INTRODUCTION

Nasopharyngeal cancer and nasopharyngeal malignant lymphoma (ML) are common malignant 
diseases of the nasopharynx that should be distinguished, because they require different treat-
ments.1 Although examination of endoscopic biopsy and cytology specimens is the gold standard 
for definitive diagnosis, such a diagnostic approach is difficult, particularly for submucosal ML 
lesions in the nasopharynx.2-5 The histopathological and immunohistochemical diagnosis of ML 
subtypes requires an adequate amount of tissue, which must be obtained by an invasive procedure 
and can lead to complications, such as bleeding. Therefore, a noninvasive approach for diagnosing 
nasopharyngeal tumors needs to be developed.

When a nasopharyngeal tumor is suspected, computed tomography (CT) is used to evaluate 
the spread of head and neck tumors, cervical lymphadenopathy, and distant metastases. However, 
differentiating between nasopharyngeal cancer and nasopharyngeal ML remains challenging on 
CT, because the imaging findings of ML in the nasopharynx and nasopharyngeal carcinoma are 
very similar, including such findings as infiltration into the base of the skull and enlarged cervical 
lymph nodes with or without necrosis.6 In addition, contrast-enhanced CT cannot be performed 
in some patients with nasopharyngeal tumors due to impaired renal function.

With the growing utility of artificial intelligence, various methods of quantitative analysis 
have become attractive because of their reproducibility and versatility. Texture analysis is a 
useful method for quantifying the intensity and patterns of images that cannot be recognized 
visually. Texture analysis studies have shown improved diagnostic characteristics, including 
predictive values on outcome.7-10 However, to the best of our knowledge, texture analysis of 
unenhanced CT scans has not been evaluated for discrimination between nasopharyngeal cancer 
and nasopharyngeal ML.

The aim of this study was to clarify the usefulness of texture analysis for discriminating 
between nasopharyngeal cancer and nasopharyngeal ML on unenhanced CT scans.

MATERIALS AND METHODS

This retrospective study was approved by our institutional review board, which waived the 
need for informed consent from patients.

Subjects
We initially identified 31 patients with histopathologically proven nasopharyngeal carcinoma 

(n=17) and nasopharyngeal ML (n=14) who underwent fluorine-18-2-fluoro-2-deoxy-D-glucose 
positron emission tomography (18F-FDG PET)/CT from April 2013 to April 2018. Every patient 
with nasopharyngeal cancer and 7 of 14 patients with ML were confirmed on an endoscopic 
biopsy specimen to have a nasopharyngeal tumor. To avoid lesions that were false-positive for 
nasopharyngeal ML, the nasopharyngeal ML masses of the remaining 7 patients were clinically 
diagnosed as nasopharyngeal ML based on the following reasons: (i) thickening or mass in the 
nasopharynx with 18F-FDG uptake on 18F-FDG PET/CT; (ii) ML was confirmed by biopsy of 
enlarged lymph nodes; (iii) After treatment, reduced thickening or mass in the nasopharynx was 
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identified by CT, magnetic resonance imaging, or 18F-FDG PET/CT. One patient with ML who 
showed increased 18F-FDG uptake but did not have a detectable mass in the nasopharynx on a 
plain CT scan was excluded. Reviews of the imaging results were performed by 2 radiologists 
(*blinded and *blinded, with 8 and 19 years of experience in radiology, respectively)) who reached 
a consensus. Finally, a total of 30 participants were included in this study.

FDG-PET/CT scanning
Whole body 18F-FDG-PET examinations with CT (Biograph mCT-S(64)4R; Siemens Health-

ineers, Forchheim, Germany) were performed from the vertex of the skull to the pelvic floor. 
18F-FDG (3.7 MBq/kg BW, max 340 MBq) was injected intravenously after at least 5 hours 
of fasting. Scans were obtained 1 hour later. The scanning parameters of non-contrast 64-row 
whole-body PET/CT scanner were as follows: tube voltage, 120 kVp; tube current, automatic 
exposure control (CARE Dose 4D); gantry rotation time, 0.5 sec; beam pitch, 1.5; imaging field 
of view, 500x500 mm; matrix, 512x512; slice thickness, 2 mm. All images were reconstructed 
with a B31f kernel. PET data were reconstructed using a three-dimensional iterative ordered 
subset expectation-maximization (OSEM) algorithm (2 iterations, 21 subsets).

Analysis of 18F-FDG PET scans
A commercially available workstation (Syngo via VB10; Siemens Healthineers) was used to 

measure the maximum standardized uptake values (SUVs) (SUVmax - maximum SUV within 
the region of interest [ROI]), and mean SUVs (SUVmean = mean SUV within the ROI). Uptake 
of FDG within the ROI, which was located to include the entire nasopharyngeal tumor was 
evaluated automatically on the workstation.

Image segmentation and texture analysis on CT scans
Texture features were analyzed in the maximum area of a target lesion on an axial image. 

ROI was manually drawn slightly inside the largest area of the nasopharyngeal tumor by LifeX 
Software (https://www.lifexsoft.com, CEA, Saclay, France) while avoiding metal artifacts.11 When 
the boundary between a nasopharyngeal tumor and soft tissue was indistinct, the boundary of 
the tumor was contoured with reference to abnormal uptake of FDG, according to a consensus 
reached by 2 radiologists (*blinded and *blinded). The texture features extracted for each area 
were as follows: 4 histogram features, 6 gray-level co-occurrence matrix (GLCM) features, 
11 gray-level run-length matrix features, 2 neighborhood gray-level different-matrix (NGLDM) 
features, 11 gray-level zone-length matrix features. The list of all texture features is provided 
in Appendix 1.

Statistical analysis
Statistical analysis is performed using JMP 10.0.2 software (SAS Institute, Cary, NC, USA). 

Data were expressed as means ± standard deviation. Comparisons between the SUVmax, 
SUVmean, and 34 texture features of the ROIs of nasopharyngeal cancers and nasopharyngeal 
MLs were evaluated by the Mann-Whitney U test. Receiver operating characteristic (ROC) 
curves were constructed, and the area under the curve (AUC) of each ROC was measured for 
each texture feature. A python-based support vector machine (SVM) with radial basis kernel 
in the machine learning library ‘scikit-learn’ (v0.16.1; http://scikit-learn.org) was implemented 
to evaluate the performance of combined texture features, with 50 repetitions of 5-fold cross 
validation. In 5-fold cross validation, the data are split into 5 folds. The first fold is used to test 
the model and the rest are used to train the model. The 5-fold cross-validation procedure was 
repeated 50 times with different splits in each repetition, in order to avoid split bias.12 The mean 
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score of each fold used for testing was calculated to evaluate the performance of the model. 
The grid search method was used to select the optimized SVM parameters, C and gamma. The 
best combinations of texture features were selected by recursive feature elimination (RFE). RFE 
reduced the combination of texture features to a specified number of texture features, based on 
importance.13 All p-values < 0.05 were considered significant.

RESULTS

The characteristics of patients and tumors are summarized in Table 1. The most common his-
topathological type of the nasopharyngeal cancers and MLs were poorly differentiated squamous 
cell carcinoma and diffuse large B-cell lymphoma, respectively. The CT-related radiation dose to 
the patient was calculated from the computed tomography dose index (CTDI). The mean CTDI 
was 4.48±1.48 mGy.

Comparisons of the SUVmax and SUVmean between the nasopharyngeal cancers and nasopha-
ryngeal MLs

The SUVmax and SUVmean of the nasopharyngeal cancers and nasopharyngeal MLs are 
shown in Table 2. The differences of the SUVmax and SUVmean between the nasopharyngeal 
cancers and nasopharyngeal MLs were not significant.

Comparisons of the texture features between the nasopharyngeal cancers and nasopharyngeal MLs
Appendix 2 shows the measurements of 34 texture features on unenhanced CT scans. Cor-

relations between tumor voxel and texture features are shown in Appendix 3. Texture features 
with strong correlation (correlation coefficient >0.7) with tumor voxel were excluded to avoid 
the effect of confounding factors.14

Table 1 Characteristics of patients and tumors (nasopharyngeal carcinomas and malignant lymphomas)

Nasopharyngeal carcinoma Nasopharyngeal ML

Age mean ± SD 52.3 ± 7.8 68.8 ± 7.1

male/female 4/13 6/7

Histological types Poorly differentiated SCC 6 Diffuse large B-cell lymphoma 11

Moderate differentiated SCC 2 Intravenous lymphoma 1

Nonkeratinizing differentiated SCC 2 Adult T-cell lymphoma 1

Nonkeratinizing undifferentiated SCC 1

Lymphoepithelial carcinoma 2

Poorly differentiated adenocarcinoma 1

Undefined 3

T stage/Clinical stage T1 1 I 2

T2 9 II 4

T3 3 III 0

T4 4 IV 7

ML: malignant lymphoma
SD: standard deviation
SCC: squamous cell carcinoma
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The differences between nasopharyngeal cancers and nasopharyngeal MLs were significant 
for energy in histogram (p = 0.038); energy, correlation, and entropy in GLCM (p = 0.017, 
p = 0.042, and p = 0.013, respectively); and coarseness in NGLDM (p = 0.003). Table 3 
summarizes the measurements of selected texture features. Coarseness in NGLDM provided the 
highest accuracy and largest AUC of 76.7% and 0.82, respectively, with a sensitivity of 64.7% 
and specificity of 92.3%.

The combination of 5 texture features (coarseness in NGLDM, entropy in GLCM, energy in 
GLCM, correlation in GLCM, and energy in Histogram) showed the highest accuracy of 81.3%, 
with a sensitivity of 81.9%, a specificity of 66.7%, and an AUC of 0.80. Figures 1 and 2 show 
representative cases for the differentiation between nasopharyngeal cancer and nasopharyngeal 
ML by SVM evaluation using the combination of texture features.

Table 2 Comparisons between SUVmax and SUVmean of nasopharyngeal  
carcinomas versus nasopharyngeal malignant lymphomas

Nasopharyngeal 
carcinoma

Nasopharyngeal 
ML

Mean ± SD Mean ± SD p

SUVmax 15.20 ± 3.13 17.70 ± 13.17 0.346

SUVmean 8.62 ± 1.98 11.10 ± 8.07 0.267

ML: malignant lymphoma
SD: standard deviation
SUV: standardized uptake value.

Table 3 Comparisons between selected texture features in maximum areas of nasopharyngeal  
carcinomas versus nasopharyngeal malignant lymphomas

Nasopharyngeal 
carcinoma

Nasopharyngeal 
ML

Mean ± SD Mean ± SD p cut-off
SEN 
(%)

SPE 
(%)

ACC 
(%)

AUC

Histogram

Energy 0.131 ± 0.02 0.144 ± 0.02 0.038* 0.130 70.6 69.2 76.7 0.72

GLCM

Energy 0.019 ± 0.02 0.025 ± 0.01 0.017* 0.026 100 46.1 70.0 0.76

Correlation 0.145 ± 0.11 0.087 ± 0.13 0.042* 0.132 70.6 76.9 73.3 0.72

Entropy 1.841 ± 0.09 1.732 ± 0.173 0.013* 1.720 100 46.1 76.7 0.77

NGLDM

Coarseness 0.016 ± 0.001 0.035 ± 0.02 0.003* 0.014 64.7 92.3 76.7 0.82

ML: malignant lymphoma
AUC: the area under the curve
SD: standard deviation
GLCM: gray-level co-occurrence matrix
NGLDM: neighborhood grey-level different matrix
SEN: Sensitivity
SPE: Specificity
ACC: Accuracy
* indicates significant differences.
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DISCUSSION

In our study, significant differences of some texture features extracted from the maximum areas 
of nasopharyngeal tumor on unenhanced CT scans between nasopharyngeal cancers and naso-
pharyngeal MLs indicate that those texture features might be able to distinguish nasopharyngeal 
cancer from nasopharyngeal ML. However, the SUVmax and SUVmean derived from PET/CT 
scans of those tumors did not differentiate between nasopharyngeal cancer and nasopharyngeal 
ML.

Differentiating between nasopharyngeal cancer and nasopharyngeal ML on cross-sectional 

Fig. 1 A 30-year-old man with nasopharyngeal carcinoma
Fig.1A-1C:  Minimum intensity projection in FDG image (A) and unenhanced CT image (B) show the naso-

pharyngeal tumor and enlargement of right Rouvière lymph node (arrow). ROI shown in color was 
manually drawn (C). 

Coarseness in NGLDM (0.009; cut-off value [COV] < 0.014), entropy in GLCM (1.90; COV > 1.72), energy 
in GLCM (0.016; COV < 0.026), correlation in GLCM (0.140; COV > 0.132), and energy in histogram (0.12; 
COV < 0.13), derived from the nasopharyngeal tumor revealed the true positive values while the SUVmax and 
SUVmean showed 12.42 and 7.03.

Fig. 2 A 67-year-old woman with malignant lymphoma
Fig. 2A-2C:  Minimum intensity projection in FDG image (A) and unenhanced CT image (B) show the naso-

pharyngeal tumor. ROI shown in color was manually drawn (C). 
Coarseness in NGLDM (0.052; cut-off value [COV] > 0.014), energy in GLCM (0.028; COV > 0.026), correlation 
in GLCM (0.128; COV < 0.132), entropy in GLCM (1.64; COV < 1.72), and energy in histogram (0.15; COV 
> 0.13) derived from the nasopharyngeal malignant lymphoma revealed the true positive while the SUVmax and 
SUVmean showed 10.49 and 6.10.
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CT images is sometimes difficult, because of similarity in the findings, which include spreading 
pattern, necrotic tumor, and cervical lymphadenopathy. Initial whole-body 18F-FDG PET for 
patients with nasopharyngeal tumors prioritizes evaluating for the presence of the original lesion 
in the nasopharynx, locations of metastases, and lymphadenopathy. Previous reports have shown 
that differences between the SUVmax derived from 18F-FDG PET scans of nasopharyngeal 
cancer and scans of nasopharyngeal ML were not significant.15,16 In our study, the SUVmax and 
SUVmean also did not differentiate between nasopharyngeal cancer and nasopharyngeal ML. Kato 
et al described that different histopathological types of nasopharyngeal ML can affect glucose 
metabolism, which might partially account for the inability of 18F-FDG PET to distinguish 
nasopharyngeal cancer from nasopharyngeal ML.16

In our study, texture analysis of unenhanced CT scans from 18F-FDG PET/CT examinations 
provided useful information for distinguishing nasopharyngeal cancer from nasopharyngeal ML. 
Texture analysis reveals the spatial distributions and relationships of gray-level patterns in target 
lesions. CT, magnetic resonance imaging, and PET have previously been used to obtain the 
characteristics of tissues within tumors, such as heterogeneity, uniformity, and granularity.17-19 
Heterogeneity in malignant lesions are recognized to be associated with disorders of attenuation 
due to increased cellularity, necrosis, and angiogenesis.20 Overlapping imaging findings between 
nasopharyngeal cancers and nasopharyngeal ML have been observed, since they both have lesions 
showing homogeneity and necrosis.21 However, in our study, entropy in GLCM related to the 
randomness of gray levels was higher in nasopharyngeal cancer than in nasopharyngeal ML, 
while energy in histogram and GLCM related to uniformity and coarseness in NGLDM related 
to homogeneity were lower. Therefore, texture analysis might be able to discriminate between 
small differences in grey levels that cannot be evaluated visually.

Texture analysis of unenhanced CT scans obtained with low radiation doses appears to be of 
increasing interest. CT scans with 18F-FDG PET are performed at a lower radiation dose than 
the dose used for conventional diagnostic CT scans that focus on identifying the location of 
lesions and the anatomical structures of the whole body. Previous studies have demonstrated the 
usefulness of PET/CT performed with low-dose unenhanced CT for the staging of ML.22,23 The 
CTDI in our study was 4.48 mGy, which was a lower radiation dose than the CTDIs reported 
in previous studies.24,25 CT performed with a reduced radiation dose results in increased image 
noise. However, Buch et al performed a phantom study that indicated that tube current did not 
affect texture analysis.26 Texture features extracted from CT images obtained with a low radiation 
dose should also be sensitive to changes in gray-level patterns in nasopharyngeal tumors.

This study has limitations. First, some nasopharyngeal MLs were not confirmed in biopsy 
specimens from the nasopharynx. Previous reports demonstrated that incidental nasopharyngeal 
uptake of 18F-FDG was seen in 4.9%–5.2% of all 18F-FDG PET examinations.27,28 Lee et al 
demonstrated that the SUVmax (range 1.8 to 10.5; mean 3.9±1.4) of benign nasopharyngeal 
lesions was significantly lower than the SUVmax of nasopharyngeal cancers.28 In our study, there 
was an ML patient with the SUVmax <10 in the nasopharyngeal lesion. However, the size of 
the tumor was found to be reduced after treatment. Second, the ROIs of tumors were manually 
segmented. A patient was excluded because distinguishing normal tissue from tumor tissue could 
not be performed on the unenhanced CT scan. It is possible that manual segmentation of target 
lesions might affect the texture features. Computerized automated segmentation with reference 
to a contrast-enhanced CT image will be required to show high reproducibility in future studies. 
Third, this was a retrospective study with a small number of patients. Our findings should be 
investigated by classifiers for validations and testing of machine learning in a larger prospective 
study with patients diagnosed using biopsy specimens from the nasopharynx.

In our conclusion, quantitative analysis of texture features on unenhanced CT scans should 
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be useful for differentiating between nasopharyngeal cancer and nasopharyngeal ML, whereas 
the SUVmax and SUVmean derived from PET/CT did not differentiate between the cancers.
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Appendixes:

Appendix 1 Definition of texture features

1. Histogram features
Histogram features consist of simple statistics that are associated with pixel values in images, while 

spatial patterns of pixel values are not included. Skewness, kurtosis, entropy, and energy were calculated.

2. Gray-level co-occurrence matrix (GLCM) features
GLCM is the distribution of co-occurring pixel values that are calculated from four directions in 

2-dimensional (2D) space or 13 directions in 3-dimensional (3D) space:

Homogeneity = 

Energy = 

Contrast = 

Correlation = 

Entropy = 

Dissimilarity = 

Where p(i,j) represents (i,j) value of the GLCM.

3. Gray-level run length matrix (GLRLM) features
The GLRLM describes the number of consecutive pixels of the same gray-level value for four 

directions in 2D space or 13 directions in 3D space: 

Short run emphasis (SRE) = 

Long run emphasis (LRE) = 

Low gray-level run emphasis (LGRE) = 

High gray-level run emphasis (HGRE) = 

Short run low gray-level emphasis (SRLGE) = 

Short run high gray-level emphasis (SRHGE) = 

Long run low gray-level emphasis (LRLGE) = 

Long run high gray-level emphasis (LRHGE) = 

Gray-level non-uniformity (GLNU) = 
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Run length non-uniformity (RLNU) = 

Run percentage (RP) = 

Where    corresponds to the number of homogenous runs.

4. Neighborhood gray-level different matrix (NGLDM)
NGLDM describes the difference in gray-levels between adjacent voxels of 8 in 2D space and 26 

in 3D space:

Coarseness = 

Contrast = 

Where E is the number of voxels in VOI and G is the number of gray-levels.

5. Gray-level zone length matrix (GLZLM)
GLZLM describes the number of homogenous zones of the same gray-level value in 2D or 3D space:

Short-zone emphasis (SZE) = 

Long-zone emphasis (LZE) = 

Low gray-level zone emphasis (LGZE) = 

High gray-level zone emphasis (HGZE) = 

Short-zone low gray-level emphasis (SZLGE) = 

Short-zone high gray-level emphasis (SZHGE) = 

Long-zone low gray-level emphasis (LZLGE) = 

Long-zone high gray-level emphasis (LZHGE) = 

Gray-level non-uniformity for zone (GLNU) = 

Zone length non-uniformity (ZLNU) = 

Zone percentage (ZP) = 

where    corresponds to the number of homogenous zones.
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Appendix 2 Comparisons between texture features of nasopharyngeal carcinomas  
and nasopharyngeal malignant lymphomas

Nasopharyngeal carcinoma Nasopharyngeal ML
Mean ± SD Mean ± SD p

Histogram
Skewness –0.023 ± 0.025 0.027 ± 0.103 0.818
Kurtosis 2.977 ± 0.600 2.924 ± 0.119 0.586
Entropy 0.951 ± 0.060 0.916 ± 0.067 0.176
Energy 0.131 ± 0.022 0.144 ± 0.020 0.038*
GLCM
Homogeneity 0.425 ± 0.022 0.432 ± 0.056 0.464
Energy 0.019 ± 0.022 0.025 ± 0.009 0.017*
Contrast 8.408 ± 1.745 8.173 ± 4.191 0.722
Correlation 0.145 ± 0.111 0.087 ± 0.129 0.042*
Entropy 1.841 ± 0.090 1.732 ± 0.173 0.013*
Dissimilarity 2.269 ± 0.217 2.221 ± 0.584 0.660
GLRLM
SRE 0.899 ± 0.008 0.903 ± 0.024 0.586
LRE 1.511 ± 0.051 1.495 ± 0.11 0.645
LGRE 9.037 ± 8.57E-12 9.063 ± 1.53E-12 1.000
HGRE 11088 ± 111 11054 ± 190 0.923
SRLGE 8.126 ± 1.29E-12 8.181 ± 7.44E-12 1.000
SRHGE 9971 ± 191 9977 ± 436 0.983
LRLGE 1.365 ± 5.59E-11 1.355 ± 1.22E-11 1.000
LRHGE 16750 ± 433 16526 ± 950 0.517
GLNU 52.65 ± 9.424 26.11 ± 10.790 0.006*
RLNU 325.6 ± 30.18 153.6 ± 94.13 0.003*
RP 0.868 ± 0.010 0.872 ± 0.025 0.503
NGLDM
Coarseness 0.016 ± 0.001 0.035 ± 0.024 0.003*
Contrast 0.101 ± 0.076 0.117 ± 0.029 0.142
GLZLM
SZE 0.705 ± 0.019 0.706 ± 0.04 0.967
LZE 5.701 ± 1.129 5.662 ± 1.293 0.503
LGZE 0.904 ± 1.15E-10 0.9064 ± 1.67E-10 1.000
HGZE 11089 ± 145.4 11056 ± 206.3 0.38
SZLGE 0.638 ± 6.77E-10 0.6401 ± 2.10E-10 1.000
SZHGE 7823 ± 343.9 7814 ± 619.8 0.967
LZLGE 0.515 ± 1.05E-07 0.514 ± 1.27E-07 1.000
LZHGE 63189 ± 12166 62447 ± 13145 0.558
GLNU 29.89 ± 3.868 14.93 ± 7.432 0.004*
ZLNU 125.56 ± 5.337 60.54 ± 46.4 0.003*
ZP 0.562 ± 0.039 0.574 ± 0.063 0.660

ML: malignant lymphoma
SD: standard deviation
ML: malignant lymphoma;
GLCM: gray-level co-occurrence matrix features
GLRLM: gray-level run-length matrix features
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SRE: short run emphasis
LRE: long run emphasis
LGRE: low gray-level run emphasis
HGRE: high gray-level run emphasis
SRLGE: short run low gray-level emphasis
SRHGE: short run high gray-level emphasis
LRLGE: long run low gray-level emphasis
LRHGE: long run high gray-level emphasis
GLNU: gray-level non-uniformity
RLNU: run-length non-uniformity
RP: run percentage
NGLDM: neighborhood gray-level different matrix
GLZLM: gray-level zone length matrix
SZE: short-zone emphasis
LZE: long-zone emphasis
LGZE: low gray-level zone emphasis
HGZE: high gray-level zone emphasis
SZLGE: short-zone low gray-level emphasis
SZHGE: short-zone high gray-level emphasis
LZLGE: long-zone low gray-level emphasis
LZHGE: long-zone high gray-level emphasis
ZLNU: zone-length non-uniformity
ZP: zone percentage
* indicates significant differences.
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Appendix 3 Correlations between texture features and tumor voxels

Correlation coefficient (r)
Histogram
Skewness –0.014
Kurtosis 0.191
Entropy 0.336
Energy –0.387
GLCM
Homogeneity –0.165
Energy –0.513
Contrast 0.103
Correlation 0.184
Entropy 0.573
Dissimilarity 0.127
GLRLM
SRE –0.110
LRE 0.096
LGRE 0
HGRE 0.387
SRLGE 0
SRHGE 0.108
LRLGE 0
LRHGE 0.164
GLNU 0.995*
RLNU 0.998*
RP –0.127
NGLDM
Coarseness –0.684
Contrast –0.498
GLZLM
SZE –0.054
LZE 0.205
LGZE 0
HGZE 0.344
SZLGE 0
SZHGE –0.004
LZLGE 0
LZHGE 0.223
GLNU 0.998*
ZLNU 0.986*
ZP –0.209

GLCM: gray-level co-occurrence matrix features
GLRLM : gray-level run-length matrix features
SRE: short run emphasis
LRE: long run emphasis
LGRE: low gray-level run emphasis
HGRE: high gray-level run emphasis
SRLGE: short run low gray-level emphasis
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SRHGE: short run high gray-level emphasis
LRLGE: long run low gray-level emphasis
LRHGE: long run high gray-level emphasis
GLNU: gray-level non-uniformity
RLNU: run-length non-uniformity
RP: run percentage
NGLDM: neighborhood gray-level different matrix
GLZLM: gray-level zone length matrix
SZE: short-zone emphasis
LZE: long-zone emphasis
LGZE: low gray-level zone emphasis
HGZE: high gray-level zone emphasis
SZLGE: short-zone low gray-level emphasis
SZHGE: short-zone high gray-level emphasis
LZLGE: long-zone low gray-level emphasis;
LZHGE: long-zone high gray-level emphasis
ZLNU: zone-length non-uniformity
ZP: zone percentage.
* indicates the correlation of more than 0.7 between each texture feature and tumor volume.




