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ABSTRACT

Studies that seek to determine the etiology of schizophrenia through pathological images and mor-
phological abnormalities of the brain have been conducted since the era of E. Kraepelin, and pioneers in 
neuropathology such as A. Alzheimer have also eagerly pursued such studies. However, there have been 
no disease-specific findings, and there was a brief era in which it was said that “schizophrenia is the 
graveyard of neuropathologists.” However, since the 1980s, neuroimaging studies with CT and MRI etc., 
have been used in many reports of cases of schizophrenia with abnormal brain morphology, thus generating 
renewed interest in developments within brain tissue and leading to new neuropathological studies. There 
are now many reports in which, in addition to morphological observations, cell distribution and the like are 
image-processed and statistically processed through computers. Due to methodological problems in making 
progress in the field of cerebral pathology, we have not yet been able to observe disease-specific findings, 
although there are several findings with high certainty. However, the neurodevelopmental hypothesis has 
been supported as being able to reasonably explain the accumulated findings of previous studies. At the 
same time, results of recent molecular-biological studies have revealed the risk genes for this disease, and 
because many of those genes are associated with functions related to nerve differentiation, development, 
and plasticity, there is growing interest in their correlations with cerebral pathology. We are now on the 
verge of uncovering the etiology of this disease by integrating cerebral neuroimaging, molecular genetics, 
and cerebral neuropathology. In that sense, neuropathological studies of this disease from new viewpoints 
have become essential.
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INTRODUCTION

More than 100 years ago, E. Kraepelin (1856–1926) hypothesized that organic abnormalities 
of the brain occurred in a syndrome called precox dementia (i.e., schizophrenia). Since then, 
the cerebral pathology of schizophrenia has been examined extensively by pioneers in the field 
of neuropathology, such as A. Alzheimer (1864–1915) and others. From this era, A. Alzheimer’s 
observation on “Psychotics (Psychosen)” is particularly notable.1) Prior to his landmark studies 
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on dementia patients, he had made detailed observations of the cerebral pathology of psychotic 
patients. Consequently, he found that patients with psychotic symptoms exhibited no gliosis. This 
indicated that the brain had not been subjected to a great enough impact to cause the loss of 
nerve cells after the brain had achieved growth, and it was neuropathologically estimated that 
prognoses for such cases would be better than those for dementia patients. This was a significant 
finding regarding the pathological conditions of schizophrenia, which was called “presenile 
dementia” at the time. This finding has also greatly influenced current studies aiming to reveal 
the pathological conditions of this illness. Namely, it asserted that the etiology of schizophrenia 
involves more neurodevelopmental elements than neurodegeneration elements. This result has led 
to the neurodevelopmental hypothesis of this disorder that was later propounded; however, this 
was all that could be discovered in the era of A. Alzheimer. Neuropathological research of this 
disease continued, but historically, compared to the great advances revealing the neuropathological 
conditions of degenerative diseases such as Alzheimer’s disease, no significant findings other 
than the absence of gliosis were found. As an expression describing this prolonged era, it was 
said that “schizophrenia is a graveyard for neuropathologists.” At the 1st International Congress 
of Neuropathology in 1952 (in Rome), the conclusion that “there is no neuropathology of 
schizophrenia” was announced with no objections. Over the following 30 years, research on the 
cerebral pathology of schizophrenia declined. In Japan, around 1960, Tatetsu2) proceeded with an 
extensive study regarding “the contribution of the morphological background of schizophrenia,” 
reporting findings such as changes in the nerve cell’s process; increased thickening and argyro-
philic property of axons and dendrites, particularly apical dendrites; sharpened contrast thereof in 
specimen media; and enlarged neuron nuclei and shrunken neuron-cell circumference. At the 4th 
International Congress of Neuropathology in 1961 (in München), Tatetsu delivered a lecture on 
his cerebral pathological findings of schizophrenia, and it is said that he was basked in the audi-
ence’s applause. Although similar studies have been conducted subsequently, many have proved 
fruitless, and there have been very few new reports. This is partially due to a background specific 
to brain tissue. Namely, the cranial nerve of a brain undergoing neuropathological research is 
subjected to various effects before the brain is used as a microscopic specimen. It is subjected 
to effects caused by various elements, such as the nutritional state during the developmental and 
maturational stages of the brain, history of infection, history of spasmodic disorders, intake of 
neural stimuli (e.g., alcohol), changes accompanying the aging process, and low oxygen during 
the agonal stage. Traces of these effects are left on tissues to various extents. Therefore, there 
have been significant differences among individuals, and this background of having difficulty 
in identifying which findings were disease-specific created barriers against an approach toward 
revealing the disease’s etiology, thus leading to a decline in this study approach.

Subsequently, in the 1980s, with progress in brain imaging technology such as CT, morphologi-
cal abnormalities of schizophrenia were reported, and moreover, with MRI, PET, SPECT, and the 
like, detailed brain images including the functions of schizophrenia cases were examined. Now, 
the occurrence of volume changes of the brain (lateral ventricular enlargement and decreases 
in volume of the medial temporal lobe) in schizophrenia cases has been accepted by many 
researchers.3) Moreover, in longitudinal studies, the occurrence of progressive volume changes 
of the brain in the disease’s course has also been accepted in reproducible research reports.4) 
As an effect of these imaging studies, neuropathological studies were conducted again. At the 
11th International Congress of Neuropathology in 1990, a workshop for the “Neuropathology 
of schizophrenia” was conducted. In addition to conventional observations of specimens, studies 
now use techniques such as image analysis with a computer, and immunohistological special 
staining. Moreover, in the 1990s, striking progress was made in genome research and a number 
of risk genes for schizophrenia were reported. Among these genes, several potential candidate 
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genes are being proven to be associated with the development and differentiation of nerves and 
the formation of neural networks, and it can be said that neural pathology, image information, 
and genome research are on the verge of integrating these findings. With the three elements of 
advances in neuroimaging, brain tissue staining, and molecular psychiatry, it is considered that 
histological studies are essential not only for revealing etiology, but also for converging various 
study results.

OVERVIEW OF MORPHOLOGICAL STUDIES

A number of morphological studies on schizophrenia were reported throughout the 1980s and 
1990s. Investigations of pathological research studied the entire forebrain. As with reports of 
imaging studies, many of these focused on the medial temporal cortex, the limbic cortex, and 
the frontal lobe. They can be classified into: quantitative studies including volume changes of the 
tissue and decreases in the size, density, and number of cells; and qualitative studies including 
disordered arrangement of neurons, and cytoarchitectic abnormality or misplaced neurons (Table 
1). A problem with this series of morphological studies is that these variations do not indicate 
visible accumulations or morphological changes of abnormal proteins, but are minute changes 
that can be confirmed only after image analysis and statistical analysis. There may be insufficient 
evidence to directly associate these changes observed in brain tissue, on which the effects of 
various events occurring in the body from birth to death have been left as traces, with the 
etiology of schizophrenia. Therefore, some study results have poor reproducibility, but among 
them, a relatively high number of findings that appear strong in terms of certainty have been 
collected (Table 2). Decreased cortical volume, which is substantially confirmed in these reports, 
is consistent with details reported regarding atrophy of the parieto-temporal lobe in schizophrenia 
cases in neuroimaging studies with MRI.24,25) In addition, in examining these findings, it should 
be noted that the tissue is more flexible than conventionally believed. Various animal experiments 
have revealed that neurogenesis occurs once in the completed brain and the synapses and neuronal 
processes are then actively formed.26) This volume change is reported to be suppressed by drug 
treatment intervention in actual schizophrenic patients.27)

Among these morphological studies, some interesting reports include a series of studies by 
Akbarian et al. that focus on cells containing NADPH-d (nicotinamide adenosine dinudeotide 
phosphate-diaphorase).15,22) NADPH-d is a coenzyme for a NO (nitric oxide) synthesis-related 
electron transport system. NO itself is involved in the plasticity of synapses in the central 
nervous system, learning, memory, etc. It has been found that NADPH-d coexists with a syn-
thetase of this NO, NOS (nitric oxide synthetase). Also, NADPH-d is found resistant to nerve 
cell damage factors including degeneration and ischemia. In addition, the NADPH-d-containing 
cells are interneurons derived from subplates in the fetal period, which play an important role 
in differentiation and development of the central nerve, and the majority of these cells have 
properties for finishing their role in the maturation process and approaching cell death. Anatomi-
cally, the NADPH-d-containing cells extend over the layers II to VI of the cerebral cortex and 
the cerebral white matter. Since NADPH-d-containing cells are resistant to cytopathy in the 
developmental process of the brain, it is considered that this remaining cell distribution indicates 
the developmental process of the central nervous system. Based on these concepts, Akbarian 
et al.15,22) observed distributions of NADPH-d-containing cells in the lateral prefrontal area and 
the cortex/white matter of the temporal lobe in a postmortem schizophrenic brain. Compared to 
a control brain, it was found that NADPH-d-containing cells had decreased in the cortex and 
increased in the deep white matter. This led to the conclusion that in the schizophrenic brain, 
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the nerve cells exhibit abnormal migration from the deep layer toward the upper cortex layer 
in the developmental process.

Our group has also conducted studies using immunohistological techniques, not only regarding 
cytoarchitectic images of the nerve cells, but also regarding which functional nerve systems 

Table 1  Principal reports in morphological abnormality in templal cortex, limbic and frontal cortex in schizo-
phrena

Are Findings Reporter

Temporal 
lobe 
Limbic 

quantity Volume loss in hippocampus, amygdala, parahippocampus Bogerts, 19855, 19906; Altshuler, 19907

Enlargement in left ventlicle Borgerts, 19855; Heckers, 19908, 19919

Volume loss in hippocampal formation Colter, 198710; Heckers, 19919

Neuronal loss in hippocampal formation Benes, 199811; Casanova, 199012

quality Cytoarchitectic abnormality in hippocampus, cinglate Arnold, 1991a13; Conrad, 199114

Distribution abnormality in NADPH-d positive neuron Akbarian, 1993b15

Frontal 
lobe

quantity Neuronal loss (number/density) Benes, 198616; Arnold, 199517

Decreased density of internal neurons Benes, 199118

Increased vertical axsons in anterior cingrate cortex Benes, 1987b19

Narrowing cell body & decreased density in anterior 
cingrate

Chana, 200320

quality Abnormal array of neurons in layer II Benes, 198616, 1987a21

Distribution abnormality in NADPH-d positive neuron Akbarian, 1993a22

 (Modified from Harrison, 199923)

Also, some findings were reported in cerebellum, brainstem, nucleus basalis, thalamus, corpus callosum and another area 
of cerebral cortex.

Table 2 Certainty in schizophrenia neuropathology

Macroscopic findings Strength of evidence

Enlarged lateral and third ventricles shown by meta-analysis

Decreased cortical volume shown by meta-analysis

The above changes present in first-episode patients strong

Disproportionate volume loss from temporal lobe (incl. hippocampus) strong

Decreased thalamic volume good

Cortical volume loss affects grey rather than white matter good

Enlarged basal ganglia secondary to antipsychotic medication moderate

Histological findings

Absence of gliosis as an intrinsic feature good

Smaller cortical and hippocampal neurons good

Fewer neurons in dorsal thalamus good

Reduced synaptic and dendritic markers in hippocampus good

Maldistribution of white matter neurons moderate

Miscellaneous

Alzheimer’s disease is not more common in schizophrenia Shown by meta-analysis

 (Modified from Harrison, 199923)
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exhibit changes in schizophrenia cases.28,29) Research on both aspects of function and anatomy 
focusing on these neurotransmitters and neuromodulators are important.

FROM MORPHOLOGY TO THE NEURODEVELOPMENTAL HYPOTHESIS,  
AND ON TO NEURAL PLASTICITY

In order to uncover the characteristics of cytoarchitectonic abnormalities in these morphological 
changes, the presence or absence of gliosis on the tissue is noted. In many studies, in addition 
to classic staining techniques such as Holzer staining, immunohistological staining of the glia 
with GFAP has often been performed, but no gliosis has been found.30) As described above, the 
absence of gliosis which was first reported by A. Alzheimer more than 100 years ago, has been 
rediscovered. From this finding, it is understood that this morphological change without gliosis 
occurs in the very early period of the formation of the nervous system (i.e., in the fetal period 
early in gestation). Therefore, the neurodevelopmental hypothesis, which states that developmental 
dysfunction is greatly involved in the etiology of schizophrenia, has been propounded. This is 
also supported by many reports indicating that various problems related to learning functions 
and social adjustment capabilities, as well as abnormal motor functions, are exhibited before 
schizophrenia is clinically developed31-33). Moreover, it may also be related to the fact that minor 
physical anomalies including decreased head circumference at birth are commonly observed.34) In 
addition, the relationship between neurodevelopmental dysfunction and schizophrenia is supported 
by reports indicating that abnormalities during the perinatal period have an odd ratio of 2.0 for 
the subsequent development of schizophrenia35) and that low birth weight has an odd ratio of 2.6 
for the subsequent development of schizophrenia.36) There have been several reports indicating that 
effects such as infections during the fetal period directly act upon these developmental problems, 
and are associated with the development of schizophrenia.

From reports indicating that volume changes of the brain in primary schizophrenia cases are 
continuously observed in neuroimaging studies, and from the fact that structural abnormalities 
of the brain are observed over time in the course of schizophrenia,37) it has been assumed that, 
in addition to the aforementioned neuronal developments, continued neuronal degeneration is 
also involved. As a very commonly-known clinical fact, at the onset of schizophrenia, noticeable 
psychotic symptoms such as hallucinations and delusions, which are called positive symptoms, 
are commonly observed in the foreground, but over the course, so-called negative symptoms, 
such as decreased motivation and decreased societal participation, become predominant, which 
makes social adjustment very difficult without sufficient treatment intervention. For these cases, 
it is estimated that original neurodevelopmental dysfunctions are followed by persistent changes 
of the brain; in other words, there is impaired adaptability or plasticity of the brain.

On the other hand, based on studies of families, twins, and adopted children, it has been 
revealed that there is a genetic background for schizophrenia.38) In current molecular genetic 
studies, no definitive responsible genes for schizophrenia have yet been found, but it is estimated 
that the cause may be an interaction of multiple genes, and several potential risk candidate genes 
are being reported.

To consider the onset and pathological model of schizophrenia as described above, the two 
hit theory used in physical disorders has been propounded (Fig. 1). According to this theory, 
damage such as infection during the perinatal period is added as an original genetic weaknesses39) 
(so called “first hit”), which impairs neuronal development, thus forming a potential basis for 
onset. Subsequently, during adolescence and early adulthood, psychological stressors (so called 
“second hit”) cause symptoms to become manifest. Subsequently, exacerbation and recurrence 
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are repeated and negative symptoms become predominant, and it is considered that these lead 
to the development of neural degeneration as observed in imaging studies. Recently, intervention 
in the early stages of the disease has become important, and that period is called the critical 
period. It is believed that the prognosis of the disease will be different if that period is missed. 
Missing opportunities for appropriate intervention during that period or providing inappropriate 
responses is called the third hit, which is believed to accelerate the progression of the disease.

In considering the factors for onset after the first hit, a series of studies by Benes et 
al.16,18,19,21,40) can be cited. In the cingulate gyrus of a postmortem schizophrenic brain, Benes et 
al. found a narrowed functional column (smallest functional cell group) in the cortex, increased 
vertical neuronal fibers (mainly excitatory fibers), and decreased inhibitory inter-neurons in the 
cortex. According to these observations, in the cingulate gyrus, vertical axons and pyramidal 
cells form excessive excitatory synapses, and moreover, inhibitory inter-neurons are decreased and 
the pyramidal cells are susceptible to excessive firing. This is a very interesting model because 
abnormalities of neural circuits are estimated based on these morphological abnormalities. These 
studies are related to the hypothesis that thinking impairments and cognitive impairments in 
schizophrenia are related to abnormalities of the neural network composed of axons, dendrites, 
and synapses.

When the neurodevelopmental hypothesis is considered from this viewpoint in combination 
with subsequent progressive pathological conditions, it can be represented in a diagram (Fig. 
2). This shows the two-hit theory described earlier in further functional detail. It shows that 
neurotransmitters, neuromodulators, and neurotrophic factors are involved in nerve develop-

Fig. 1 The two (third) hits theory of schizophrenia’s illness course. Some vurnerabilities exist in 
genes. Some impacts, including infection or birth trauma etc. in the embryonic/perinatal period 
on the brain are the first hit. These factors may later induce neurodevelopmental dysfunction. 
Psychological stressors will trigger the onset of schizophrenic symptoms as a second hit. Lack 
of appropriate support will lead to progression of the pathology of the illness as a third hit.
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ment, maturation, and the differentiation and formation of networks, indicating that functional 
maintenance actions of the nerve systems over an entire lifetime, such as plasticity and retention 
of synapses, are very important. In relation to this hypothesis, there have been many findings 
regarding, for example, BDNF (Brain Derived Neurotrophic Factor), which is one of the important 
cytokines involved in neuronal development, in schizophrenia cases.27,41,42)

CHANGES IN BRAIN MORPHOLOGY, SYNAPSES, AND NERVE FIBERS

Now, how should volume changes of schizophrenic brains observed in brain images be 
understood? Selemon et al.43) estimated that volume changes of schizophrenic brains are due to 
insufficient development of cell bodies and the neuronal processes of schizophrenic nerve cells, 
which lead to reductions in the thickness of the cortex. They propounded this as the “reduced 
neuropil hypothesis.” The neuropil (neuronal process) in the cortex is basically composed of 
axons, dendrites, and pre- and post-synaptic organs. Decreased dendritic spines of pyramidal cell 
neuronal processes and decreased lengths of the dendrites in the cortex of the frontal and temporal 
lobes in schizophrenia cases have been reported (see Fig. 3). In addition, decreases in the markers 
for synapses, synaptophysin, SNAP-25, MAP-2, synapsin, synataxin, complexin I & II, GAP43, 
etc., have also been reported (summarized in Table 3). Electrophysiological and neuropsychologi-

Fig. 2 Conceptual diagram of the neurodevelopmental dysfunction hypothesis of schizophrenia. Some 
genetic vulnerabilities may induce interference in neurodevelopment during growth period via 
some stressful events. Neural dysfunction, including selective apoptosis, synaptic formation and/
or myelination may lead to inapporopriate neurotransmisson and clinical symptoms. Individual 
circumstances and life events of each patient may affect characteristics of clinical symptoms to 
varying degrees. In every stage, many cytokines, neurotransmitters or neuromodulators support 
neuronal development. Failure of these supportive mechanisms is closely related to the etiology of 
schizophrenia. Recent studies indicate that negative symptoms induce reduced synaptic plasticity 
due to insufficient neurotrophic action.
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cal studies have also associated these phenomena with failures in the dynamic interactions within 
the brain in schizophrenia cases. In addition, in electron-microscopic observations, abnormalities 
of synaptic density and accumulation, as well as morphological abnormalities of the dendritic 
spines, have been reported.74) Common cerebral sites in which these abnormalities are reported 
include the hippocampal region, the dorsolateral prefrontal area, and the anterior cingulate gyrus 
cortex, and it has been reported that presynaptic markers are decreased in these sites.

It is widely known that NMDA receptors are related to the plasticity of synapses for 
higher cognitive function via LPT (long-term potentiation). The activation of NMDA receptors 
is considered to cause calcium ions to flow into the cells, activate enzymes such as CaMKII, 
and synthesize proteins necessary for altering synapses via the CREB signaling pathway. From 
studies using genetically altered animals, CREB was found to be essential for the composition of 
memory via LTP.75) Moreover, the expression of NMDA receptors in postsynapses, the abnormal 
expression of subunits of relevant receptors such as NR1, NR2A, and NR28, and the relevant 
binding proteins PSD95, SAP97, and SAP98, have been reported.76)

FROM NEUROPATHOLOGY TO NEUROTRANSMITTER

It has been revealed that plasticity, not only of synapses but also serotonin and GABA itself, 
is related to neuronal development and nerve plasticity. Also, both of these are involved in the 
proliferation, migration, differentiation, synaptogenesis, and death of the nerve cells.77)

One of the classic hypotheses related to schizophrenia is the dopamine hypothesis, which is 
widely accepted because classic antipsychotic drugs have actions to block dopamine receptors. 
It has been collaterally proven that dopamine-releasing drugs such as methamphetamine cause 

Fig. 3 Decrease of brain volume may induce an increase of neuron density. Pathological factors includ-
ing: 1. smaller cell bodies, 2. decrease neurites, 3. shortening of dendrites, and 4. A decrease in 
presynaptic terminals, is considered to induce volume decrease (modified from Selemon et al., 
1995,43 Glantz et al., 2000,44 and Glantz et al., 200645).
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schizophrenia-like symptoms. It has also been verified through meta-analyses that dopamine 
content and D2 receptor density are increased in schizophrenic brains.78) However, it is not 
clear whether this increase indicates an original pathological condition of the disease or is due 
to antipsychotic drugs.

Because LSD, which has a high affinity with serotonin receptors, causes psychotic symptoms, 
it has been believed that serotonin (5-TH) is also greatly involved in the pathological conditions 
of schizophrenia.79) In studies of postmortem brains, decreases in 5-HT2A receptors and increases 
in 5-HT1A have been reported.80) The serotonin nervous system and the dopamine nervous system 
have been found to have dense interactions within the brain, but pathological conditions cannot 
be explained based only on changes in the neurotransmitters.

Table 3 Reports of abnormality in synaptic associate protein/neurite in schizophrenic brain

Area Fimdings Reporter

Hippocampal 
temporolimbic

Decrease of MAP2/5 in hippocampal dendrite Arnold, 1991b46

Decrease of Synapsin in hippocampus Browning, 199347

Decrease of Synaptophysinin hippocampus Eastwood, 199548

Decrease of Complexin I and II Harisson/Eastwood, 199849

Decrease of SNAP Young, 199850

Decrease of Complexin I and II Eastwood/Harrison, 200051

Decrease of Dysbindin1in subiculm Talbot, 200452

Decrease of VGLUT1mRNAin hippocampus Eastwood/Harrison, 200553

Decrease of the ratio of ComplexinI/ComplexinII Sawada, 200554

Decrease of spine in CA3 of schizophrenia (electron microscopic) Kolomeets, 200555

Frontal lobe Decrease of NE positive-vertical fiber Benes, 1987b19

Decrease of density of synapse Aganova/Uranova, 199256

Decrease of Synaptphysin in BA9,10,20 Perrone-Bizzozero, 199657

Changes of distribution of TH-positive fiber Benes, 199758

Increase of Synaptophysin, SNAP-25, Syntaxin in BA24 Gabriel, 199759

Increase of Syntaxin in BA24 Honer, 199760

Decrease of Synaptophysin in BA9,46 Glanz/Lewis, 199761

Decrease of neurites of Pyramydal neuron Garey, 199862

Decrease of SNAP-25in BA10,20/Increase in BA9 Thompson, 199863

Selective decrease of GABAnergic nerve ending GABA Woo, 199864

Decrease of Synaptophysin, SNAP-25 in BA10 Karson, 199965

Decrease of Synaptophysin, Myelin basic protein in prefrontal cortex Honer, 199966

Decrease density of GAT-1-positive neuron in Layer II-III of coretx Pierri, 199967

Decrease expression of PSD95 in BA9 Ohnuma, 200068

Increase of GAD65-immunoreactivity in Layer II-III of cortex Benes, 200069

Increase of GABA(A)-receptor in BA46 Volk, 200270

Decrease of SAP97 Toyooka, 200271

Decrease of VAMP Halim, 200372

Decrease of GABA membrane transporter1in BA46 Konopaske, 200673

MAP: microtubule associated protein, SNAP: Synaptosoal associated protein, BA: Brodmann Area, NF: neurofilament, 
TH: Tyrosin Hydroxilase, GAT1: GABA membrane transporter1, PSD: Postsynaptic density protein95, GAD: Glutamate 
decarboxylase, VAMP: Vesicle associated Membrane protein
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In addition, because phencyclidine, an NMDA antagonist, exhibits schizophrenia-like psy-
chotic symptoms, the impaired glutamic-acid hypothesis has also been proposed.81) From the 
hippocampus of the diseased brain, decreased expression of non-NMDA receptors, increases in 
NMDA receptors, increased reuptake of glutamate in the frontal lobe, and other findings have 
been reported.82,83)

There arises a question of whether these abnormalities and changes of neurotransmitters consti-
tute impairment of the actual nerve cell functions or are related to morphological variations of the 
nerve cells, and whether they are caused by impaired plasticity of the synapses or malfunctions 
of the respective neural networks. One of the pressing issues in the future will likely be to see 
whether these questions, along with research methodologies, have been adequately addressed.

MOLECULAR BIOLOGY AND NEUROPTHOLOGY

Harrison and Weinberger have pointed out that studies of “genetic cytoarchitecture” would 
enable a better understanding of the etiology of schizophrenia.84) From recent results in the field 
of molecular psychiatry, there have been a series of reports supporting their neuropathological 
findings. Several risk genes for schizophrenia and items associated with brain morphology and 
cerebral pathology will now be discussed. Major reports available at the time of writing are 
shown in Table 4.

DISC1 (Disrupted-in schizophrenia 1) is currently the most credible disease candidate gene 
for schizophrenia and mood disorders, and has been found to be involved in the adjustments of 
neuronal migration and elongation of neuronal processes during the neurodevelopmental period. 
This candidate gene (suspectable gene) was discovered through genetic research on the Scottish 
multiplex psychiatric disease family. Gene mutations of this DISC1 reportedly inhibit elongation 
of neuronal processes and damage development of the cerebral cortex. The functions of dysbindin 
in the brain are not well understood, but because its addition to cultured nerve cells increases 
secretion of glutamic acid,87) it is considered to be greatly involved in the glutamic nerve system.

It has been reported that the expression of dysbindin was decreased in the hippocampus 
of postmortem schizophrenic brains,52) and it is thought that gene mutations of dysbindin can 
diminish glutamate nerve function. Neureglin1 is a neurotrophic factor and is a candidate gene 

Table 4 Susceptibility gene and related neuropathological/morphological/brain tissue findings

Susceptibility gene for 
schizophrenia Reported findings (reporter)

DISC1 Reduces neurite extension in DISC1 mutation (Ozeki, 200385)
Impairs neurite outgrowth in DISC1 mutation (Kamiya, 200586)

Dysbindin Presynaptic dysbindin-1 reductions in hippocampus of schizophrenia (Talbot, 200452)
Dysbindin might influence exocytotic glutamate release (Numakawa, 200487)

NRG1 (neureglin1) Type 1 isoform was significantly increased in schizophrenia DLPFC (Hashimoto, 200488)

COMT Polymorphism of COMT gene might contribute to morphological abnormalities in 
 schizophrenia (Ohnishi, 200689)

RGS4 (regulator of G 
protein signaling 4) Decreases of RGS4 expression in schizophrenia (Mirnics, 200190)

BDNF
BDNF gene variation may influence brain morphology (Agarts, 200642)
Polymorphisms in the BDNF gene may be associated with variation in frontal lobe 
 morphology (Varnäs, 200891)

NOTCH4 NOTCH4 allelic variability was correlated with frontal lobe brain tissue volumes (Wassink, 
200392)
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for the development of nerves and schizophrenia. Reportedly, it is significantly expressed in the 
dorsolateral prefrontal cortex of postmortem schizophrenic brains.88) It is found to perform an 
important function regarding neuronal development for neureglin function.93) In addition, it has 
recently been revealed that neureglin1 plays an important role in the formation of myelin.94) This 
is interesting to consider along with reports that myelin hypoplasia is intimately related to the 
pathological conditions of schizophrenia.95)

COMT is a metabolic enzyme of catecholamines such as dopamine, and the correlation of the 
gene polymorphism thereof with schizophrenia has been known since a relatively early period.36) 
The volume of the cerebral cortex reportedly decreases due to this gene polymorphism in patients 
with chronic schizophrenia.89)

RGS4 is a protein that gained the interest of Mirnics et al.90) because its expression was 
decreased in the prefrontal area in schizophrenia cases, and subsequently, Chowdari et al.96) 
discovered a correlation between the polymorphism thereof with schizophrenia. RGS4 is called 
a regulator of G protein signaling 4, and 28 types of RGS proteins have been discovered so far. 
RGS proteins serve to terminate the actions of G protein receptors. Because many actions of the 
neurotransmitters utilize signals via G proteins, it is believed to be involved in the expression of 
a variety of transmitters. It is estimated that it influences neuronal development through the ex-
pression of neuromodulators via G proteins rather than by directly influencing brain morphology.

BDNF is a neurotrophic factor involved in nerve development and differentiation, the plasticity 
of synapses, etc., and moreover, plays an important role in the synthesis, metabolism, and release 
of neurotransmitters.97) From these facts, it is thought to be closely associated with the develop-
ment of schizophrenia related to neurodevelopmental dysfunction and subsequent changes in the 
nervous system. Studies with meta-analysis have indicated that gene mutations of BDNF can be 
risk factors for schizophrenia.98) It has been reported that in healthy subjects, gene mutations of 
BDNF indicate decreases in the volume of hippocampal gray matter, and increases the volume 
of several types of gray matter such as the dorsolateral frontal area.99) Even in schizophrenic 
patients, some BDNF gene polymorphisms are reported to involve differences in volume among 
the caudate nucleus, putamen, and gray matter of the frontal lobe.42) Our group also conducted 
immunohistological searches for expressions of BDNF and its receptors in postmortem schizo-
phrenic brains, and made several findings.100)

NOTCH 4 genes are known to be involved in the proliferation, differentiation, and migration 
of neural stem cells, but there are reportedly many mutations of this gene accompanied by 
decreases in the volume of the prefrontal area in schizophrenia.92)

In addition to the above, many other risk factors related to nerve development have been 
reported. Molecular biological studies related to such morphologies strongly support the neuro-
developmental hypothesis of schizophrenia, and in the future, it will be important to comprehend 
the etiology in a multilayered manner while making connections between morphological studies 
from the neuropathological field and the results of imaging studies.

With advances in molecular biology, a variety of genetically-modified model mice have been 
created. Within this context, model mice that can be assumed to be schizophrenic have been 
developed in recent years. One such model is the 14-3-3e knockout mouse.101) 14-3-3e protein is 
a DISC1-related protein that has been found to form combinations with proteins such as NUDEL, 
LIS1, and GRB2, and to be greatly involved in neuronal elongation, nerve cell development, 
and neural network formation.102) Recently, our group conducted neuropathological research on 
the brains of these mice and found developmental dysfunctions in TH (tyrosine hydroxylase) 
fibers.103) It is necessary to further verify whether such changes actually occur in the brains of 
schizophrenic patients, but it will likely provide a reasonable explanation of the morphological 
changes that have been commonly discussed.
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COGNITIVE FUNCTIONS IN SCHIZOPHRENIA

It is known that schizophrenia involves impairments of various cognitive functions, and 
recently, the improvement of those cognitive functions has been one of the goals of treat-
ment.104,105) In addition, mainly in the United States and other developed countries in Europe, 
the number of elderly schizophrenic patients has increased due to the aging of the population. 
In routine clinical practice, there are many opportunities to encounter cases in which an elderly 
schizophrenic patient expresses symptoms of dementia. In cases of the kind, it is necessary to 
distinguish whether the dementia is to be regarded as an extended symptom of schizophrenia 
or as a complication of degeneration such as Alzheimer’s dementia. This is because a diagnosis 
of dementia results in different methods of support and therapeutic regimens in the future from 
those for schizophrenia, and also results in different uses of social resources and psychological 
approaches. On the other hand, as described above, if there are any neurodevelopmental problems 
in the schizophrenic brain, the impact of aging is considered to have a great effect. Definitive 
diagnoses of dementia are made based on neuropathological research.

Is schizophrenia more likely to involve complications of dementia compared to the general 
population? Jellinger and Gabriel106) closely studied the postmortem brains of 99 schizophrenic 
patients aged 55 years or over who satisfied the DSM-III and ICD-10 diagnosis criteria by 
using the CERAD pathological diagnosis criteria107) and Braak’s neuropathological staging.108) 
As a result, it was estimated that the risk rate for onset that satisfied the pathological diagnosis 
criteria for probable AD (Alzheimer disease) or above was 7.1% for patients aged 55 years or 
over and 8.7% for those aged 65 years or over. From these results, it was concluded that the 
frequency of Alzheimer-type degeneration observed in elderly schizophrenic patients is equal to 
or slightly less than that in the general population. Both before and after this study, there were 
similar neuropathological studies, and among them, even studies on 100 postmortem brains109,110) 
yielded the result that “the occurrence frequency of Alzheimer’s disease in schizophrenia cases 
exhibits no significant difference from that of the general population.” In other words, even 
in schizophrenia cases, the risk for dementia is assumed to be equal to that for the general 
population, and it is necessary to examine the aging of schizophrenic patients in a biological-
psychological-sociological manner in terms of cognitive functions.

When considering this problem, one must consider the effects of long-term administration 
of antipsychotic drugs. Wisniewski et al.111) investigated postmortem brains autopsied from 
year 1932 to 1952. Because antipsychotic drugs did not exist in the clinical settings in year 
1932–1952, those autopsied brains during that period were not affected by drug influences. They 
concluded that cases treated with antipsychotic drugs had a significantly high frequency of NFT 
(neurofibrillary tangle), which indicated that the anticholinergic action of antipsychotic drugs 
could promote the formation of NFT. It has also been reported that phenothiazine drugs promote 
the formation of NFT112) or conversely inhibit it,113) and that haloperidol, which is a typical anti-
psychotic drug, dose-dependently inhibits the production of amyloid beta protein114). However, it 
is not an exaggeration to say that the neuropathological effects of long-term administration of 
antipsychotic drugs on the brain have not been examined at all. Furthermore, because so-called 
atypical anti-psychotic drugs with many neuroleptic actions have been used in recent years, the 
neuropathological effects of long-term administration of these drugs on the brain remain an issue 
for close examination.
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ISSUES FOR THE FUTURE

Neuroimaging studies have reported that in schizophrenic brains, the volume of the brain 
changes over time even after onset, a finding now widely accepted. Now, it is necessary to reveal 
the types of changes occurring in the brain tissue itself during this change in brain volume. 
Stimulated by advances in neuroimaging studies, neuropathological studies on schizophrenia 
were actively conducted mainly in the 1990s, and recently, a number of candidate genes related 
to the neurodevelopmental hypothesis have been verified from the results of molecular genetic 
studies. Although there are various problems in studying cerebral pathology (Table 5), it is the 
nerve cells that are responsible for psychoneurotic activity that occurs in “locations” of brain 
tissue such as synapses, axons, glial cells, and neurotransmitters. In seeking to determine the 
pathological conditions and etiology of schizophrenia, whether through image information or 
genome information, it is necessary to understand these factors as neuropathological changes in 
“location.” As clarifying the relationship between genetics and the neuropathological findings in 
schizophrenia and speculating on their functional convergence, the tendency to integrate molecular 
biological results in neuropathological and visible forms has entered a new phase.

In addition, mainly in developed countries, the problem of caring for elderly schizophrenic 
patients has increased due to aging of the population. In considering aging in schizophrenia 
cases, new approaches for pathological conditions that include drug therapy are required based 
on accumulations of conventional neuropathological findings regarding the aging of the brain.

After the era in which “schizophrenia is the graveyard of neuropathologists,” we have now 
entered an era when we should review information regarding research approaches in a neuropatho-
logical manner from other new aspects, and seek to understand abnormalities in brain structure 
together with other study results in a multilayered manner.
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