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ABSTRACT

For the effective use of the annual workplace health checkup data, we tried to perform multilevel 
analyses to explore whether the year-to-year weight variation causes any concurrent effects on the lipid 
profiles among middle-aged Japanese workers. Subjects were 1,939 healthy male workers 40–59 in age from 
whom serial data of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglyceride 
(TG) were collected during health checkups conducted in the years 1997–2000. The effects of body 
mass index (BMI) on serum concentrations of those lipids were investigated by statistical analysis with 
multilevel modeling to distinguish multiple levels of information with individual repeated measurements 
within individuals. A significant increase of TC and TG, and decrease of HDL-C with BMI increase were 
confirmed. Subanalyses according to both the baseline BMI status (< 25 kg/m2 or ≥ 25 kg/m2) and smoking 
status (never, former, or current) yielded the same BMI-dependent changes of lipid profiles, but obese 
never smokers failed to show significant effects of BMI on HDL-C concentrations. Multilevel analyses of 
annual health checkup data linked at individual levels indicated that year-to-year weight variation, though 
usually in a much narrower range than the between-individual variation, had a strong impact on the 
corresponding changes of serum concentrations of TC, HDL-C, and TG. This result supports the public 
health significance of intervention into weight control to prevent the development of atherogenic risks 
among a healthy workplace population.
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INTRODUCTION

There have been a number of studies demonstrating the relationship of age and blood lipid 
profiles.1-6) A previous cross-sectional study reported age-related changes in lipid profiles in 
the middle-age range, showing an increase in total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein, 
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and triglyceride (TG) levels with age.1) In addition, these age-related changes in lipid profiles 
are also affected by longitudinal weight fluctuations. The Fels Longitudinal Study investigating 
the association between serial changes in lipid levels and those in body composition among 269 
healthy white individuals revealed that changes in adiposity are a more influential independent 
predictor of longitudinal changes in serum lipid levels than age.6) Although the fat and lean tissue 
can have distinct effects on lipid and lipoprotein levels,6) the use of labor-intensive, standardized 
techniques such as hydrodensitometry is required to evaluate the body composition to attain the 
requisite level of precision essential to monitoring the longitudinal variation of adiposity over 
time within individuals. In contrast, the body mass index (BMI), often used as a proxy measure 
of adiposity and known to be positively related to either TC or TG and negatively related to 
HDL-C,7) is a reproducible anthropometric measurement applicable to mass-screening settings.

Using the weight history of 1,932 male Japanese workers aged 40–59, we have revealed that 
the root mean square error of variation (RMSE) as a measure of long-term weight fluctuation 
increases the risk of developing hyperinsulinemia.8) While our study focused on the deleterious 
effects of weight instability during the adulthood period between age 20 and middle-age, the 
results of some previous studies agree on the beneficial health effects of modest weight loss in 
terms of the reduced cardiovascular risk or mortality.9-11) In this respect, we considered it worth-
while to explore how the yearly weight variation affects the concurrent changes in atherogenic 
biomarkers, since the health checkup programs are usually conducted on an annual basis in most 
Japanese workplaces, and the knowledge about the effects of year-to-year weight changes on 
those biomarkers is thought to constitute a basis for the modification of health behavior. However, 
the relationship between weight variation and repeatedly measured biomarkers in longitudinal 
observation has been little investigated, except for the Fels Longitudinal Study which dealt with 
the follow-up data from a limited number of subjects.4, 6)

Generally, the data arising from a longitudinal observation have a complex, correlated structure 
entailing sources of random variability at multiple levels, which cannot be modeled well by using 
conventional methods for the analysis of data at a single time point. One of the approaches to 
handling such hierarchically structured data is multilevel modeling, also know as hierarchical 
regression, which generalizes ordinary regression modeling to distinguish multiple levels of infor-
mation in a model.12) Multilevel analysis has been used in the fields of education, demography, 
and sociology to describe an analytical approach that allows the simultaneous examination of the 
effects of group-level and individual-level variables on individual-level outcomes.13-16) Recently, 
interest in the use of multilevel analysis in medical research has grown.17-23) In addition to 
individuals nested within groups, multilevel models can be applied to other situations with nested 
sources of random variability, e.g. in the analysis of longitudinal data where repeat observations 
are nested within individuals over time.24)

The present study was undertaken to examine the effects of BMI variation on the repeatedly 
measured serum lipid using a multilevel analysis of data from a large sample of middle-aged 
Japanese male workers. The data used were regarded as forming a hierarchical structure with 
individual repeated measurements of serum lipid concentrations (level-1) within individuals 
(level-2). Because smoking habit is likely to have a certain influence on body weight fluctuations 
and presents a risk known to elevate serum triglyceride and lower HDL-C,25) the interactions 
between the smoking status and BMI were particularly considered in the analysis.
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METHODS

Study population and data collection
The study population was selected from male workers of a manufacturing company in Aichi 

Prefecture, who agreed to participate in a cohort study of cardiovascular diseases. Women were 
excluded because of their small number. A total of 2,816 men participated in an annual health 
checkup program conducted in autumn of the baseline year 1997 and gave written informed 
consent to answering a lifestyle questionnaire and providing the results of routine biochemical 
analyses of blood. These analyses were performed in a laboratory which has regularly undergone 
both the internal and external quality control. We defined eligible subjects as those who were 
aged 40 to 59 years, completed the lifestyle questionnaire sheet, were not taking medication for 
diabetes or dyslipidemia, and underwent measurements of all of fasting TC, HDL-C, and TG. 
These eligibility criteria were met by 1,939 men who were recruited for the current investiga-
tion. Serial data of serum lipid and lipoprotein concentrations were collected annually until the 
health checkup in the year 2000, resignation, retirement, or job transfer, whichever came first, 
for a total of 7,056 examinations. The study protocol was approved by the Ethical Board of the 
Nagoya University School of Medicine.

Statistical analysis
Let the random variable Yij denote the serum lipid measurement at the ith examination for the 

jth individual. We then assume that Yij satisfies the following general multilevel model:

Within-individual model - Level 1
Yij = aj + bj (BMIij – BMIj ) + g1 (ageij – agej ) + g2Covar2j +  + gkCovarkj + eij

where i={1, 2, 3, 4}. Time-varying variables, BMIij and ageij, are BMI and age at the ith examina-
tion for the jth individual, whereas BMIj and agej are the mean values across all examinations for 
the jth individual. This rescaling of BMI and age so as to center around the individual-specific 
mean is performed to render the parameters more interpretable.26) Covarkj is the covariate variable 
created by dummy-coding of the selected baseline characteristics for the jth individual. Multivariate 
adjustment was done for age (centered) and the following baseline variables: smoking status 
(current, former, never), drinking habits (none, light: daily ethanol consumption approximately 
less than 23 g; moderate: 23 to 46 g; heavy: 46 g or over), leisure-time physical activity (not 
very active, somewhat active, regularly active), preference for fatty taste (yes, no), and pres-
ence of a family history of dysplipidemia among siblings or parents for the jth individual. The 
classification method for the intensity of both drinking habits and leisure-time physical activity 
has been thoroughly described in our previous paper.27) The intercept aj represents the average 
measurement of the lipid profiles for the jth individual with average age and BMI across all of 
the subject’s examinations, and eij the error components which account for the within-individual 
variability. The regression coefficient bj is used to model the linear variation of serum lipid 
concentrations with BMI.

Random effects were added to reflect the natural heterogeneity in the population. In this 
model, both the intercept and the slope for time were allowed to vary across individuals, and 
the individual-specific regression coefficients were defined at the second level:

Subject random-intercept-slope model - Level 2
aj = a + uj

bj = b + ϖj

The random components, uj and ϖj, measure the variation of individual’s mean measurement of 
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the lipid concentrations and slope, respectively, from their average in the whole sample.
For the statistical software, we ran the Statistical Analysis Package (SAS) release 9.1 licensed 
to the Nagoya University Information Technology Center. Multilevel model fitting was per-
formed using the procedure PROC MIXED, where we specified RANDOM statement and 
type=UNSTRUCTURED, which does not assume the random-effects covariance to be of any 
specific form.24,28,29) These multilevel analyses were conducted for all subjects in the beginning, 
and subanalyses were done for subjects with baseline BMI < 25 kg/m2 (non-obese group) and 
those with BMI ≥ 25 kg/m2 (obese group). Further subanalyses were done by smoking status. 

To consider the interaction between the smoking habit and weight, additional subanalyses were 
conducted by smoking status in obese vs. non-obese group, separately. Since fasting TG was 
found to be skewed in the distribution of our study population,30) a logarithmic transformation 
was adopted for normalization in all multilevel analyses. All p values for statistical tests were 
two-tailed, and values < 0.05 were regarded as statistically significant.

RESULTS

The number of subjects who participated in the annual health checkup conducted in the year 
1998, 1999, and 2000 declined to 1,860, 1,714, and 1,543, respectively, mostly due to compulsory 
retirement. Table 1 gives the baseline characteristics of the 1,939 subjects. Age and BMI averaged 
51.4 years and 22.7 kg/m2, respectively, and those with BMI ≥ 25 kg/m2 accounted for 19.4% in 
this study population. With respect to dyslipidemic profiles at baseline, 15.2%, 16.0%, and 26.1% 
were subjects with TC ≥ 240 mg/dl, HDL-C < 40 mg/dl, and TG ≥ 150 mg/dl, respectively.

Estimated fixed-effects of age and BMI on TC, HDL, and TG concentrations are presented 
in Table 2. As BMI increases, significant increases in TC and TG, and significant decreases 
in HDL-C were observed. With age, both TC and HDL-C significantly increased, whereas TG 
significantly decreased. The estimated random-effects shown in Table 2 indicated that variability 
in the individual’s mean of TC, HDL-C, and TG between subjects significantly contributes 
to the population variability. The slope, which refers to the rates of change in HDL-C and 
TG concentrations to BMI, also significantly varied between subjects, but TC did not have a 
significantly variable slope between subjects.

In the subanalyses according to the baseline BMI status, the concentrations of TC and TG 
were positively associated with BMI both in the non-obese and obese group, while those of 
HDL-C were negatively associated with it, as shown in Table 3. The results showed that vari-
ability in the intercept in all of the models and variability in the slope in most of the models 
also significantly contributed to the population variability. Similar significant relationships of BMI 
with the serum lipid concentrations, and significant between-subject variability in the intercept 
were demonstrated irrespective of the smoking status (Table 4).

Table 5 showed that, in never-smokers, the fixed effects of BMI on the HDL-C concentrations 
were significant in the non-obese subpopulation, but not significant in the obese subpopulations. 
On the other hand, in current smokers, BMI was significantly related to the HDL-C concentra-
tions, irrespective of the baseline BMI status. However, the relationship between BMI and 
TG concentrations was significant in both the non-obese and obese never smokers (data not 
shown).
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Table 1 Basic characteristics of 1,939 men at baseline

Average Median (Min, Max)

Age (year) 51.4 52 (40, 59)

Body mass index (kg/m2) 22.7 22.6 (14.8, 43.3)

Total cholesterol (mg/dl) 206.4 204 (82, 355)

HDL cholesterol (mg/dl) 53.3 51 (25, 126)

Triglyceride (mg/dl) 128.1 108 (29, 1049)

No. of subjects (%)

Age

    ≥ 50 years 1,308 (67.5)

Body mass index

    ≥ 25 kg/m2 377 (19.4)

Smoking status

    Never 694 (35.8)

    Past 56 (2.9)

    Current 1,189 (61.3)

Drinking status#

    None 494 (25.5)

    Light 394 (20.3)

    Moderate 531 (27.4)

    Heavy 520 (26.8)

Physical activity

    Not very active 1,162 (59.9)

    Somewhat active 691 (35.6)

    Regularly active 86 (4.5)

Family history of dyslipidemia

    Yes 67 (3.5)

# Light: daily ethanol consumption of approximately  < 23 g; 
moderate: ≥ 23 g, < 46 g; heavy: ≥ 46 g.

Table 2 Parameter estimates from mixed model describing effect of BMI variation on longitudinal lipid profiles 
of 1,939 men

Dependent variable Total cholesterol HDL cholesterol Triglyceride#

Parameter estimates* p value Parameter estimates* p value Parameter estimates* p value

Fixed effects estimates

    BMI+ (kg/m2) 3.6 < 0.01 -1.3 < 0.01 0.098 < 0.01

    Age+ (year) 2.1 < 0.01 1.4 < 0.01 -0.0084 0.032

Random effects estimates

    Variance of intercept 888.5 < 0.01 161.0 < 0.01 0.21 < 0.01

    Variance of slope 7.1 0.094 4.0 < 0.01 0.0058 < 0.01

    Covariance 7.0 0.52 -3.3 0.06 0.0042 0.20

# Log-transformed.
* Adjusted for age, preference for fatty taste, smoking status, drinking status, leisure time physical activity, and family history of 
dyslipidemia.
+ Variables rescaled to center around the subject-specific mean.
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Table 3 Parameter estimates from mixed model describing effect of BMI variation on longitudinal lipid profiles 
of 1,939 men by baseline BMI level

Dependent variable Total cholesterol HDL cholesterol Triglyceride#

Parameter estimates* p value Parameter estimates* p value Parameter estimates* p value

BMI < 25 (n = 1,562)

Fixed effects estimates

    BMI+ (kg/m2) 3.5 < 0.01 -1.3 < 0.01 0.090 < 0.01

    Age+ (year) 2.4 < 0.01 1.4 < 0.01 -0.0058 0.19

Random effects estimates

    Variance of intercept 875.4 < 0.01 163.6 < 0.01 0.20 < 0.01

    Variance of slope 13.1 0.024 5.3 < 0.01 0.0064 < 0.01

    Covariance 15.9 0.20 -2.3 0.28 0.0037 0.31

BMI ≥ 25 (n = 377)

Fixed effects estimates

    BMI+ (kg/m2) 3.5 < 0.01 -1.2 < 0.01 0.12 < 0.01

    Age+ (year) 0.80 0.11 1.5 < 0.01 -0.017 0.045

Random effects estimates

    Variance of intercept 893.3 < 0.01 117.8 < 0.01 0.18 < 0.01

    Variance of slope 0.0 - 0.89 0.014 0.0046 0.077

    Covariance - - -6.2 0.16 0.00068 0.92

# Log-transformed. 
* Adjusted for age, preference for fatty taste, smoking status, drinking status, leisure time physical activity, and family history of 
dyslipidemia. 
+ Variables rescaled to center around the subject-specific mean.

Table 4 Parameter estimates from mixed model describing effect of yearly BMI variation on longitudinal lipid 
profiles of 1,939 men by smoking status

Dependent variable Total cholesterol HDL cholesterol Triglyceride#

Parameter estimates* p value Parameter estimates* p value Parameter estimates* p value

Never smoker (n = 694)

Fixed effects estimates

    BMI+ (kg/m2) 3.1 < 0.01 -1.4 < 0.01 0.096 < 0.01

    Age+ (year) 2.2 < 0.01 1.6 < 0.01 -0.0079 0.22

Random effects estimates

    Variance of intercept 890.9 < 0.01 166.4 < 0.01 0.20 < 0.01

    Variance of slope 0.0 - 6.7 < 0.01 0.012 < 0.01

    Covariance - - -1.3 0.69 0.013 0.035

Former smoker (n = 56)

Fixed effects estimates

    BMI+ (kg/m2) 2.6 0.21 -2.2 < 0.01 0.076 < 0.01

    Age+ (year) 2.6 0.032 1.1 < 0.01 -0.018 0.32

Random effects estimates

    Variance of intercept 680.6 < 0.01 172.4 < 0.01 0.20 < 0.01

    Variance of slope 24.0 0.24 5.1 0.18 0.0 -

    Covariance 139.0 0.050 -3.3 0.75 - -

Current smoker (n = 1,189)

Fixed effects estimates

    BMI+ (kg/m2) 3.8 < 0.01 -1.2 < 0.01 0.10 < 0.01

    Age+ (year) 2.0 < 0.01 1.4 < 0.01 -0.0084 0.097

Random effects estimates

    Variance of intercept 897.8 < 0.01 156.8 < 0.01 0.21 < 0.01

    Variance of slope 12.8 0.032 2.3 < 0.01 0.0037 0.058

    Covariance -12.8 0.38 -4.3 0.036 0.0011 0.79

# Log-transformed.
* Adjusted for age, preference for fatty taste, drinking status, leisure time physical activity, and family history of dyslipidemia.
+ Variables rescaled to center around the subject-specific mean.
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DISCUSSION

In this study of middle-aged men, longitudinally observed lipid data with concurrent measure 
of obesity were analyzed using multilevel analysis. As is usual in repeated measurements of serum 
biomarkers, the between-individual variation is much wider than the within-individual one, which 
is likely to compromise the statistical power when conventional regression analyses are applied 
to data from repeated measurements nested within individuals over time. A strong point of the 
multilevel model is that it enables one to adjust for the influence of a wide variety of correlation 
structures and to estimate such parameters of particular interest as the variance and covariance.24) 

In this respect, the results of our study indicated a wide variation of individual-specific mean 
serum concentrations of TC, HDL-C and TG. The individual-specific slopes describing the rates 
of change in serum lipid concentrations to BMI were also found to vary widely from subject 
to subject.

Overweight and obesity are considered underlying causes of elevated serum TG and low 
HDL-C in the general population.25) Moreover, a positive relationship of weight with TC or TG, 
and a negative relationship with HDL-C were confirmed even in a lean Asian population.7) The 
effects of weight loss in obese individuals have also been systematically reviewed.31) Although 
long-term beneficial effects of weight reduction on TC or TG levels were consistently demon-
strated in previous reports, the systematic review revealed an extreme variation in the HDL-C 
response to weight reduction, concluding that HDL-C has a poor relationship with weight loss 
compared to the other lipid levels.

One of the salient results of this study is that significant relationships of BMI with the serum 
concentrations of TC, HDL-C and TG were confirmed using data from longitudinal observations. 
Because the multilevel modeling allows one to distinguish the effect of wide between-subject 
variability in both the intercepts and slopes, the observed relationship of BMI to the lipid 
concentrations suggested that the year-to-year BMI variations have a significant impact on the 
lipid profiles. The annual workplace health checkup is mandated by the Industrial Safety and 
Health Law of Japan, and the effective use of annually collected data in linkage at the individual 
level has been our great interest. The results of our study indicated that prompt improvements in 

Table 5 Fixed-effects estimates from mixed model describing effect of BMI variation 
on HDL-cholesterol concentrations of 1,939 men by smoking status at different baseline 
BMI levels

Parameter estimates* p value

BMI < 25 kg/m2

     Never smoker (n = 549) -1.6 < 0.01

     Former smoker (n = 45) -1.9 0.059 

     Current smoker (n = 968) -1.1 < 0.01

BMI ≥ 25 kg/m2

     Never smoker (n = 145) -0.76 0.13 

     Former smoker (n = 11) -4.4 0.035 

     Current smoker (n = 221) -1.1 < 0.01

* Adjusted for age (rescaled to center), preference for fatty taste, drinking status, 
leisure time physical activity, and family history of dyslipidemia.
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lipid profiles are expected to occur with mild weight control even from yearly observation, while 
poor weight control is likely to result in immediate worsening of lipid profiles at the same time. 
Similar results are universally confirmed in the subanalyses, irrespective of either the baseline 
BMI status or smoking status. We consider that the characterization of the relationship between 
BMI and lipid profiles indicated in the present study has significant ramifications for public 
health from the practical point of view, since the results can be incorporated into workplace 
health promotion programs to raise awareness of the importance of weight control. The biological 
explanation for the lack of significant BMI-dependent changes in HDL-C concentrations among 
obese never smokers remains to be elucidated in further investigations. In light of a previous 
report which revealed that HDL-C is not as sensitive as other serum lipid levels in terms of 
response to weight variation,30) the involvement of factors not identified in our study may well 
play some role in this particular subpopulation. Meanwhile, LDL-C was not included as part of 
the lipid profiles in this study, since its serum concentration was not directly determined. We 
thus estimated LDL-C concentrations using Friedewald’s formula and found that LDL-C behaved 
in a similar way as TC in both the main analysis and subanalysis models (data not shown).

Our study has a number of limitations. Our reason for treating age and BMI as time-varying 
in the model was to better evaluate patterns of changes in lipid profiles with these predictors. 
However, we did not treat other covariates as time-varying, because information on those covari-
ates was not available on a year-to-year basis. The possibility can not be ruled out therefore that 
the classification of such lifestyle variables as smoking/drinking habit or physical activity could 
have changed in an individual during the serial data collection. Moreover, while those under 
medical treatment for diabetes or dyslipidemia at baseline were excluded from the analyses, our 
study may be affected by the cases who started to undergo medical treatment anew during the 
follow-up period. In our rough estimation based on the intermediate evaluation, 7% of our study 
population were newly diagnosed with dyslipidemia during the years 1997–2004, indicating an 
annual incidence rate of about 1–2%. The influence of those cases also remains to be evaluated 
in any further analyses.

Another limitation is the unbalanced nature of our data in the sense that an equal number of 
measurements were not available for all subjects, mostly due to compulsory retirement in the 
course of follow-up, and less often, to resignation, job transfer, or simply skipping the annual 
health checkup. Multilevel analysis uses all the available information of the incomplete data 
without the need either to delete or to impute measurements.29) While this is justified whenever 
the missing data mechanism is assumed to occur at random, no such assumption seemed war-
ranted with respect to the dropout process in our data. In fact, we have observed approximately 
150 yearly retirements from our study population, which accounted for most of the missing, and 
such nonrandom dropouts are likely to occur among the older subjects.

In conclusion, it is suggested that multilevel analyses are a useful analytic tool for effec-
tive use of the serial annual health checkup data linked at individual levels. Even though the 
year-to-year weight variation within individuals is usually confined to a much narrower range 
than the between-individual variation, its impact on the corresponding yearly changes of serum 
concentrations of TC, HDL-C, and TG is found to be strong, underscoring the importance of 
workplace health promotion programs aimed at proper weight control to achieve improvements 
in lipid profiles.
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