MECHANISMS AND PREVENTION OF INTIMAL THICKENING OF THE AUTOGENOUS VEIN GRAFTS — POSSIBLE INVOLVEMENT OF NITRIC OXIDE —

KIMIHIRO KOMORI

Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine

ABSTRACT

Platelet thrombosis, intimal hyperplasia, and the progression of atherosclerosis are the most important factors determining the patency of vein grafts for arterial occlusive disease. Interactions between aggregating platelets and the vessel wall play an important role in all of these processes. The endothelium modulates the underlying vascular smooth muscle by releasing nitric oxide (NO), a potent vasodilator and anti-aggregating substance. This review focuses on vascular modulation by NO in vein grafts.

Key Words: Vein graft, Intimal thickening, Endothelium, Nitric oxide, Gene therapy

INTRODUCTION

Although grafting with an autologous vein as a vascular substitute in the treatment of peripheral arterial occlusive disease is the surgical procedure that yields the best long-term results, late vein-graft failure remains a significant problem for vascular surgeons. Platelet thrombosis, intimal hyperplasia, and the progression of atherosclerosis are the most important factors determining the patency of vein grafts for arterial occlusive disease. Interactions between aggregating platelets and the vessel wall play an important role in all of these processes.

The significant role of the vascular endothelium in vasomotor regulation has been demonstrated. The endothelium produces potent vasodilators such as prostacyclin and nitric oxide (NO). This review focuses on vascular modulation by NO in vein grafts. In addition, it describes the current status of experimental studies concerning the differences in the biological behavior between the vein and arterial grafts.

CLINICAL OUTCOME OF HUMAN BYPASS GRAFTS

The saphenous vein remains the most durable conduit for small-vessel arterial bypass. Despite the excellent results achieved with saphenous veins for peripheral bypass, approximately 30% of these autogenous vein grafts occlude within 5 years. In cardiac surgery, the internal
mammary artery (IMA) and saphenous vein were used for aortocoronary bypass. In one series, IMA grafts and saphenous vein grafts had patency rates of 95 and 93% respectively, at 1 year, but at 5 and 10 years the patency rates of the IMA grafts were 88 and 83% which were superior to the 74 and 41% rates for saphenous vein grafts. Trauma to the saphenous vein during surgical preparation can denude the endothelium, impair the intrinsic vein’s fibrinolytic activity, and damage the vessel wall, thereby predisposing the vein to develop early thrombosis. Careful harvesting of the graft, with particular attention paid to the use of modified storage solutions, avoiding overdistention has been shown to improve the patency and preserve the ingrate of the graft in both animal models and the clinical settings.

Thus far, the biological advantages of arterial grafts have been reported in terms of aortocoronary bypass. The proliferation of vascular smooth muscle cells from the venous system in response to pulsatile stretch appears to be markedly greater than that of arterial vascular smooth muscle cells. Comparative morphological and angiographic studies of IMA and saphenous vein bypass grafts that have been implanted long-term show that accelerated atherosclerosis commonly occurs in saphenous vein grafts but tends to be extremely rare in IMA grafts. Several potential explanations may be offered for the superiority of the IMA graft. The media of the artery may derive nourishment from the lumen as well as from the vasa vasorum, and the internal elastic lamina of the IMA is uniform. Moreover, the finding that the endothelium of the IMA produces significantly more prostacyclin and NO than that of the saphenous vein may explain why endothelium-dependent relaxation is more pronounced, thus allowing flow-dependent autoregulation to occur. The diameter of the IMA graft is usually a closer match to that of the recipient coronary artery than is the diameter of a saphenous vein.

In addition, platelet-derived growth factor (PDGF) stimulates the proliferation of veins but not IMA smooth muscle cells. These differences have been confirmed in an organ culture model, where intimal proliferation was significantly increased in surgically prepared veins compared with the IMA and fresh saphenous veins, thus suggesting a greater susceptibility of veins to injury. There are therefore a number of biological differences that may explain the superior long-term performance from graft disease of the arterial grafts.

HISTOLOGICAL STUDIES

Scanning electron micrographs

In vein grafts 3 days after grafting, scanning electron microscopy revealed a high degree of endothelial loss, but deformed remnant endothelial cells and platelets were present on the luminal surface of the grafts. At 1 week after implantation, the surface of the endothelial cells had recovered, but cell junctions were incomplete. After 2 weeks, the endothelium completely covered the intima, and there were no apparent differences from the control endothelium.

In arterial grafts 1 day after grafting, the intimal surface of the mid-portion of the arterial graft was covered by mildly damaged endothelial cells. The intercellular crevices were expanded, the junction of endothelial cells was broken in part, and some adherent leukocytes were observed. But no adherent platelets were observed and the integrity of the endothelial cell layer was largely maintained with endothelial cell denudation found. On the 3rd day after grafting, a nearly intact endothelial cell layer had covered the whole luminal surface, although endothelial cell junctions and inflammatory cells were observed to be in a shabby state, following a line in the direction of blood flow and exhibiting nearly normal cell junctions. On the 7th day after grafting, electron photomicrograph scanning of the luminal surface of the arte-
VEIN GRAFTS AND NITRIC OXIDE

Fig. 1 Scanning electron micrograph16,18.
I: Vein grafts
II: Arterial grafts
A 3 days after grafting, B 7 days after grafting, C 14 days after grafting,
D 28 days after grafting

In the vein grafts 3 days after grafting (I.A), scanning electron microscopy revealed a high degree of endothelial loss, with deformed remnant endothelial cells and platelets present on the luminal surface of the grafts. One week after implantation, the surface of the endothelial cells had recovered, but cell junctions were incomplete (I.B). After 2 weeks (I.C), endothelium completely covered the intima, and there were no apparent differences from the control endothelium.

In arterial grafts on the 3rd day after grafting (II.A), a nearly intact endothelial cell layer covered the whole luminal surface, although endothelial cell junctions and inflammatory cells were observed to be in a shabby state, which followed a line in the direction of blood flow and exhibited nearly normal cell junctions. On the 7th day after grafting (II.B), electron photomicrograph scanning of the luminal surface of the arterial grafts showed an endothelial cell layer with microvillus projections, and some microcavities were found on endothelial cells. These damaged endothelial cells seemed to be largely restored. On the 14th (II.C) and 28th day (II.D) after grafting, the luminal surface of arterial grafts was much the same as normal arterial endothelial cells.

Time course of intimal thickening after grafting

In canine vein grafts and rabbit carotid vein grafts, the intimal thickening was observed19-22. Such thickening was not remarkable 3 days after implantation, and there was a gradual increase
at 4 weeks in the canine vein grafts16.

On the other hand, in canine femoral arterial grafts, by each of the 1st, 3rd, 7th, 14th, and 28th postoperative days, no intimal thickening was observed17,18. The histological findings in terms of intimal thickening in the arterial grafts were thus quite different from those of the vein grafts.

Effects of flow changes on intimal thickening

Hemodynamic factors such as a low-flow velocity and low-shear stress result in a progression of late graft failure because of pronounced intimal thickening23-25. Changes in the hemodynamic parameters have been shown to affect the structure of both normal and diseased vessels26.

The deformation of smooth muscle cells by arterial hemodynamics can lead to the activation of protein tyrosine kinases, thereby initiating smooth muscle cell proliferation27. Vein grafts with low flows are associated with greater intimal thickening28. Similarly, low-shear stress is also associated with an accelerated development of intimal thickening in vein grafts24,25,29. Morinaga reported that such a thickening develops in vein grafts under low-flow conditions (poor distal runoff) and is reversed when these vessels are then re-implanted into a system with normal flow parameters25.

In our previous studies, we classified the electromagnetically measured blood-flow waveforms at reconstructive surgery into five types. We reported a close relationship between the ultimate results of the arterial reconstruction and intraoperative blood-flow waveforms30. Grafts with a type 0 or I flow-wave pattern (normal-flow group characterized by steep acceleration and deceleration) showed a long-term patency. In grafts with type II, III or IV flow waveform patterns (abnormal-flow groups characterized by a gentle sloping), graft failure was more frequent than in the normal-flow group. A canine poor-runoff model was prepared according to Morinaga’s method25, in which all tributary arteries distal to the saphenous artery in the unilateral posterior limb were ligated and severed, except for a superior branch of the posterior femoral artery. Four weeks after the first surgical procedure, the collateral vessels seemed to be fully developed.
in the right lower limb (the poor-runoff limb)25. The femoral artery and vein were exposed at a site proximal to the previous operation, and the femoral vein and artery was interposed into the femoral artery in an end-to-end fashion.

The average value of intimal thickening of the canine vein grafts in poor-runoff limbs was significantly thicker than that of control limbs,24,25 although no apparent intimal thickening of the canine arterial grafts was observed in the poor runoff17,18 (Fig. 2).

ENDOTHELIUM AND NITRIC OXIDE (NO)

Time course of endothelium-dependent relaxations

Previous studies have reported an impairment of the endothelium-dependent relaxations in autogenous vein grafts,16,19,20,21 although electron microscopy scanning demonstrated a morphologically intact endothelium16,19,21 (Figs. 1 and 2).

In canine arterial grafts, endothelium-dependent relaxations to ACh were maintained at each postoperative period examined17,18. The maximum relaxations induced by ACh on the 3rd postoperative day after grafting were significantly impaired compared with the control, while on subsequent postoperative days, the relaxations in the arterial grafts and normal arteries were similar. The endothelium-dependent relaxation to A23187 was maintained at each postoperative period examined and was similar between the arterial grafts and normal arteries. The maximum relaxation induced by A23187 on the 1st and 3rd postoperative days after grafting was significantly impaired when compared with the control, while on subsequent postoperative days, the relaxations were similar between the arterial grafts and normal arteries17,18.

Effects of flow changes on endothelium-dependent responses

The endothelium-dependent responses are known to be modulated by alterations in the blood flow31-33. A chronically elevated blood flow is known to result in increased endothelium-dependent relaxation. In vein grafts, several studies have demonstrated that endothelium-dependent relaxations were impaired under normal-flow conditions19-22. In addition, we have reported that poor-runoff conditions in canine femoral vein grafts, which closely mimic those of clinical late-graft failure30, cause more endothelial dysfunction than that which occurs with a normal runoff.30,34,35 On the other hand, in canine arterial grafts, relaxations to ACh, ADP and A23187 were comparable between the control and the poor-runoff femoral arteries17,18.

The effects of lumbar sympathectomy on the properties of both endothelium and smooth muscle cells of the canine femoral artery and autogenous vein grafts under poor-runoff conditions were examined16. Five weeks after the development of a poor-runoff model, a unilateral left sympathectomy was performed, and both femoral veins were also grafted to the femoral arteries on both sides. After 4 weeks, endothelium-dependent responses and intimal thickening of both autogenous vein grafts were then examined. The endothelium-independent contractions to acetylcholine and the endothelium-dependent relaxations to ADP and A23187 were all comparable between the right and left vein grafts. In addition, the intimal thickening of the vein graft was comparable between the two groups. These results suggest that lumbar sympathectomy does not alter endothelial function in terms of NO, although mean blood flow of the denervated femoral arteries and vein grafts was significantly higher than that of the innervated femoral arteries and vein grafts. These results suggest that continuous vasodilation following sympathectomy may be a more potent factor with respect to the regulation of vascular tonus than the physiologic regulation of NO.
Next, we investigated the underlying mechanisms associated with the loss of responsiveness of veins grafted into the arterial circulation. In particular, we tested the possibility that the altered response is related to modifications in the biologic properties of the vascular smooth muscle, of the endothelial cells or both. After 4 weeks, vein grafts and unoperated veins were removed, and endothelium-dependent (acetylcholine: ACh) and endothelium-independent (nitric oxide, SIN-1 [the active metabolite of molsidomine]) relaxations were studied \textit{in vitro}. In unoperated veins, ACh caused endothelium-dependent relaxations as well as NO- and SIN-1-
duced concentration-dependent relaxations in the presence and absence of the endothelium, respectively. These relaxations were associated with a time-dependent accumulation of guanosine 3'5'-cyclic monophosphate (cyclic GMP)22.

In vein grafts ACh induced only minor endothelium-dependent relaxations, whereas NO and SIN-1 evoked concentration-dependent relaxations in preparations without endothelium, which were shifted significantly to the right compared to unoperated veins. In vein grafts the endothelium-mediated production of cyclic GMP stimulated by ACh was significantly reduced when compared to that in unoperated veins, and that evoked by SIN-1 was not different. These results demonstrate that the production of endothelium-derived NO by endothelial cells is markedly impaired in vein grafts, and also that the responsiveness of the smooth muscle is reduced, although to a somewhat smaller extent22. These altered biologic responses of grafted veins may contribute to graft failure.

Comparison of endothelial function between in-situ and reversed vein grafts

Experiments were performed to determine whether the endothelium-dependent responses differed between in situ and reversed vein grafts. The influence of a value disruption or a dissection of the adventitia was also examined27. Segments of canine jugular veins were grafted into the carotid arteries during procedures such as reversed grafting, in situ grafting with value disruption, in situ grafting without valve disruption, and in situ grafting with dissection of the adventitia.

In the reversed and in situ vein grafts with valve disruption, ACh caused endothelium-independent contractions, whereas in the in situ vein graft without valve disruption, ACh-induced endothelium-dependent relaxations were preserved. Adenosine diphosphate (ADP) caused comparable endothelium-dependent relaxations in the in situ vein graft irrespective of valve disruption. In the reversed vein graft, ADP-induced relaxations were significantly impaired. In the in situ vein graft with dissection of the adventitia, relaxations in response to ACh and ADP were significantly reduced.

These results suggest that endothelial function, in terms of NO in the in situ vein graft, can be preserved, and that adventitial dissection in in situ vein grafts should be minimized to preserve endothelial function.

CLINICAL MEANING OF ENDOTHELIAL DYSFUNCTION AND NITRIC OXIDE

Grafting with an autologous vein as a vascular substitute in the treatment of peripheral arterial occlusions is the surgical procedure that yields the best long-term results1-3. However, late graft failure is still a significant problem, particularly in cases with poor-runoff vessels. Hemodynamic factors such as low-flow velocity and low-shear stress result in late graft failure due to a progression of intimal thickening23-25,28. Platelets probably play an important role in both thrombotic occlusion and intimal hyperplasia, and it was confirmed that intimal thickening may be platelet-mediated38-40, since certain anti-platelet drugs will reduce intimal hyperplasia31,42. NO relaxes vascular smooth muscle, reduces platelet adhesion, and is in itself a potent anti-platelet-aggregatory substance4,5. One characteristic of a diseased vascular wall is an impairment in endothelium-dependent relaxation. This has been repeatedly demonstrated in hypertensive animals, in animals with atherosclerosis, and in experimental cerebral vasospasm43-45. In humans, atherosclerotic arteries do not relax when infused in situ with ACh; instead, a paradoxical vasoconstriction occurs46. In addition, an impairment in endothelium-dependent responses in the regenerated endothelial cells has also
been noted in experimental models of balloon denudation47 and reperfusion injury48. We obtained clear evidence that endothelium-dependent relaxations in response to ACh and A23187 are reduced slightly in arterial grafts in the early postoperative period, and that they are then quickly restored to normal, and no intimal thickening of arterial grafts was observed for the entire 4-week observation period17,18. In vein grafts, we found that a peak of intimal hyperplasia is reached 2 to 4 weeks after grafting16. In addition, in vein grafts, endothelium-dependent relaxations were impaired in the early postoperative stage and continued until 6 weeks after grafting16. However, the precise mechanism underlying the difference between the responses of vein grafts and arterial grafts remains unknown. The preserved endothelial function in canine arterial grafts in terms of endothelium-dependent relaxations, irrespective of the flow change, may thus be one of the mechanisms contributing to an absence of intimal thickening in arterial grafts with poor runoff conditions.

PREVENTION OF GRAFT ATHEROSCLEROSIS: ecNOS GENE TRANSFER

Although the etiology of long-term failure is still unclear, a combination of the progression of the host’s underlying disease, increased graft intimal hyperplasia, and the development of atherosclerosis-like lesions within the vein graft appear to be the principal causes. Intimal hyperplasia is the universal response of a vein graft to insertion into the arterial circulation, and is considered to result from both the migration of smooth muscle cells out of the media into the intima and the proliferation of these smooth muscle cells; later the smooth muscle cells deposit an extracellular matrix. However, this concept is challenged by recent findings demonstrating that other sources of smooth muscle cells may contribute to vascular diseases.49-54 Smooth muscle cells in vein grafts appear in the neointima earlier than in the media after cell death, which is an early cellular event in grafted vessels49. Shi et al.50 demonstrated that myofibroblasts in the adventitia of arteries may contribute to neointimal formation in response to endothelial cell injury. In addition, current evidence indicates that bone-marrow progenitor cells may be a source of smooth muscle cells for transplant arteriopathy51, neointimal lesions of injured arteries55,56 and hypercholesterolemia-induced atherosclerosis57. Detailed examinations to elucidate the mechanisms of vein-graft intimal thickening need to be carried out, although recent a study suggested that bone marrow cells were not the source of smooth muscle cells in mice vein grafts58.

Therapies to limit the development of intimal thickening in vein grafts continue to attract considerable attention. However, no effective clinical regimen is presently available to counter the intimal hyperplastic response found in vein grafts. The use of aspirin is associated with a decrease in early thrombotic events in vein grafts, but it has not been documented to reduce the incidence of restenosis or the development of atherosclerosis59. We demonstrated that NO played a critical role in the impaired function and progression of lesions. For instance, we and others demonstrated that EDRF-dependent vasorelaxation and NO production were impaired in all phases of vein graft remodeling after implantation19,22, and we also showed this to be accelerated by the low-shear stress induced by poor-runoff canine models34. Similar to such functional impairment, the intimal thickening of vein grafts was also promoted by low-shear stress34, and increased synergistically to a greater degree due to hypercholesterolemia60. Considering the vasculoprotective properties of NO, a therapeutic strategy to induce NO production in the vessel wall thus seems reasonable. In fact, we have already shown that the systemic administration of L-arginin, a precursor of NO, inhibited vein graft intimal thickening with hypercholesterolemia61 and that poor-runoff-induced intimal progression was also suppressed by the
VEIN GRAFTS AND NITRIC OXIDE

direct gene transfer of ecNOS52. Recently, we also demonstrated that the ecNOS gene transfer suppressed intimal hyperplasia of vein grafts under hyperlipidemic conditions, although this effect may be limited because of the smooth-muscle cell loss related to the use of intraluminal delivery methods53.

The strategy of ecNOS gene transfer seems to merit future study as a possible therapeutic approach to prevent late-graft failure in a clinical setting. Clearly, further studies are called for to clarify such factors as the gene delivery method and vehicles. In addition, proper sites to be transferred should be investigated to achieve more effective NO production and to genetically manipulate modified vein grafts which are resistant to both intimal thickening and atherosclerosis.

REFERENCES

