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ABSTRACT

The peripheral mechanism of hyperalgesia is considered to be the result of nociceptor sensitization. As
possible agents causing nociceptor sensitization, bradykinin, histamine, prostaglandin (PO) s, protons and
nerve growth factor are evaluated with respect to their release into the injured tissue, their sensitizing poten
cies. Whether blocking these agents suppresses sensitization was also evaluated. In addition, the intracellular
mechanisms by which bradykinin, histamine and POs cause sensitization are reviewed.
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INTRODUCTION

The main objective of this review is to consider the mechanism of sensitization of peripheral
nociceptors, including the intracellular mechanism, as hyperalgesia in the periphery is con
sidered to be due to sensitization of nociceptors. Before going into details, however, it would be
better to offer a brief overview on hyperalgesia and related altered pain conditions, with
reference to the terminology.

Changed pain states related to inflammation and neuropathic pain are characterized by alter
ations of pain perception that include an enhanced sensitivity to normally noxious stimuli
(hyperalgesia) and an abnormal pain sensitivity to normally non-painful stimuli (allodynia, Fig.
1). This definition was given by IASP in 1994. 1) However, the word "hyperalgesia" is still used
in different ways. When the skin is injured, the areas of hypersensitivity are found not only in
the injured site but also in a much larger area extending well beyond the site of injury and into
undamaged skin. In the first area, low intensity mechanical stimuli and warmth evoke pain (thus
allodynia) and noxious stimuli causes more severe pain (hyperalgesia). Within the second area,
low intensity mechanical stimuli causes pain (thus allodynia), but warmth does not (absence of
thermal allodynia). Although different from the IASP definition of 1994, these regions have
been called areas of primary and secondary hyperalgesia, respectively, based on the classical
descriptions of Lewis2) and Hardy et al.3)

Of these two kinds of hyperalgesia, primary hyperalgesia can be explained by nociceptor sen
sitization: it has long been known that an injury induces a process of nociceptor sensitization
(increased excitability and lowered threshold of nociceptors). Mild burn (or repetitive heat
stimulation) has been used in experiments to study this phenomenon because the magnitude of
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Fig. 1 Relationship between stimulus intensity and pain sensation in normal
and injured conditions.
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Fig. 2 Heat-induced sensitization of a polymodal receptor.
The bradykinin response (peri-stimulus time histogram) and the heat response (bar graph) of a testicular
polymodal receptor unit are shown along the order of testing. BK: bradykinin 0.1 11M. Heat stimulation
was applied by replacing bathing Krebs solution (34T) with a preheated Krebs solution (45, 48 or SST).
Note that after SST stimulation, both the heat and bradykinin responses were facilitated.

injury can be well controlled. One example of heat-induced sensitization of the nociceptor is
shown in Fig. 2. It was demonstrated that after mild burn (strong heat stimulation at 5YC), the
heat threshold decreased and the response to the same heat stimuli increased. These changes in
nociceptor responses satisfactorily explain changes in pain sensation. Such changes in nocicep
tors are now considered to be induced by inflammatory mediators, tissue acidosis, raised tem
perature in the injured tissue and certain processes induced by increased production of nerve
growth factor (NGF). This will be discussed later in more detail.

Secondary hyperalgesia, in contrast, is considered to be mediated by alterations in the central
processing of sensory input and to be induced by arrival in the central nervous system of the
afferent volleys that the injury evokes in peripheral nociceptors. Evidence for changes in the
central nervous system is:
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1. If the conduction of C-fiber activity is blocked during injury, allodynia and hyperalgesia in
the area of secondary hyperalgesia does not develop upon recovery from the block, whereas
primary hyperalgesia is seen.4)

2. Intraneural microstimulation of A-fibers at a place proximal to the secondary hyperalgesic
area induces allodynia when the projection area is located inside the area of secondary
hyperalgesia. 5)

The alteration responsible for allodynia in the area of secondary hyperalgesia is also different
from that of primary hyperalgesia. It is not due to the lowered mechanical threshold of nocicep
tors, because allodynia disappeared after the block of A-fibers which convey volleys from low
threshold mechanoreceptors.6) Thus, allodynia is caused by a change in modality of the sensa
tion evoked by low threshold mechanoreceptors, from touch to pain.

Central changes induced by nociceptive input have been intensively studied, and readers are
asked to refer to the reviews for details.7-1O)

This review will focus on the mechanism of peripheral sensitization of nociceptors by inflam
matory mediators, because this is the area of the author's work. In addition, the effects of pH,
NGF and recruitment of sleeping fibers will be briefly reviewed.

SENSITIZATION OF NOCICEPTORS BY INFLAMMATORY
MEDIATORS AND OTHER CHANGES

To determine whether a substance mediates sensitization of nociceptors and causes pain and
hyperalgesia, the following points must be clarified: 1) It must be known that a substance is
produced in the injured tissue and its concentration. 2) The ability of a substance to excite and
sensitize nociceptors at reasonable concentrations (that is, near concentrations measured in the
injured tissue) must be demonstrated. 3) Inhibition of the action of a substance or substances
should alleviate pain and/or hyperalgesia. In the following sections, these points will be con
sidered separately.

1) Inflammatory mediators and other changes in inflamed tissues
In damaged and inflamed tissues, potassium and inflammatory mediators such as bradykinin,

histamine, serotonin and prostaglandins (PGs) are released from damaged cells, blood plasma
and inflammatory cellsY·16) In carageenin-inflammatory pouch fluid, 0.4 ng/ml (about 0.4 nM)
of bradykinin has been detected. 14) With regard to the histamine concentration in inflamed
tissues, there is a large difference between reports: a concentration slightly less than 10 ~M has
been reported in pouch fluid inflamed with carrageenin, 16) whereas in vivo microdialysis re
vealed that probe insertion induced release of about 40 nM of histamine. 17) Close apposition of
nerve fibers and mast cells containing histamine18.19) suggest a higher concentration near nerve
terminals. The concentration of PGE2 in inflamed tissue is reported to be on the order of 0.01
~M in exudate and 0.1 ~M in abscess,1l,13,20,2J) and a lO-fold increase of PGE2 above the con
trol value was detected after induction of carrageenin inflammation in the temporomandibular
joint by microdialysis combined with ELISA for PGE2.IS) Any absolute value was not given in
the report.

A pronounced decrease in tissue pH up to 5.4 and 6.91 is reported in exudate of the abscess
from painful inflammation22) and joints experimentally inflamed with urate crystals.23) Such pro
nounced decrease in pH in the inflamed tissue has recently been confirmed using pH-sensitive
needle electrodes. 24)

When applied exogenously, these inflammatory mediators not only induce pain but also
induce hyperalgesia to heat and/or mechanical stimulation in humans. 24-30) A good correlation
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between decrease in pH and pain sensation has also been observed.24) Therefore, these media
tors and tissue acidosis are candidates for nociceptor sensitizers.

Cytokines also appear in inflamed tissues. They do not directory sensitize nociceptors, but
rather do so through release of PG and other substances, or through other mechanisms such as
induction of receptors for inflammatory mediators.

2) Bradykinin-induced excitation and facilitatory effect on the heat response through B2
receptor subtype

The testicular polymodal receptor activities described in the following sections were recorded
using canine testis-spermatic nerve preparations in vitro. 31) These studies were done in collabo
ration with researchers at the Research Institute of Environmental Medicine, Nagoya University.

Bradykinin induces excitation in testicular polymodal receptors ~ 10 nM at 34'C (Fig. 3).
This threshold concentration of bradykinin for the excitation of the testicular polymodal recep
tor is the lowest among inflammatory mediators the author has studied so far (see below), and
also the lowest to excite nociceptors in many tissues (2.6 flg/O.3 ml in cat muscle,32) 0.26 flg/0.3
ml in cat knee joint afferents,33) 10 nM - 10 flM in rat skin nerve preparation34)). This excitatory
effect is characterized by a long latency (about 15 s (for A-delta fibers) to 22 s (for C-fibers) at
0.1 flM (see ref. No.31), and decrease in the response magnitude on repetitive application at the
relatively short interval of ca. 10 min (a process of tachyphylaxis)Y) A clear concentration-de
pendency of the response magnitude was observed.31,35)

The bradykinin response is also dependent on the temperature of the stimulus solution: the
response at 36°C starts earlier, reaches a higher discharge frequency and ends faster than at
30°C;36) a different pattern of augmentation from that induced by PGs where the sensitized
bradykinin response starts earlier but ends later. 37) One of the factors producing this facilitation
pattern induced by temperature increase may be a change in the activity of the bradykinin de
grading enzyme.36) The threshold concentration decreases when the temperature of the stimulus
solution is raised, namely 50 nM at 30'C and 9 nM at 36°C. This temperature dependency of
the bradykinin response may partly explain the well-known phenomena that warming the in
flamed skin aggravates pain whereas cooling alleviates it.

In addition to exciting polymodal receptors, bradykinin sensitizes the response to heat
(45-48'C) of testicular polymodal receptors (Fig. 3).35) This sensitization was observed from
about 0.1 nM, a concentration 100 times lower than that necessary to excite the polymodal re
ceptors. That means that induction of excitation is not required to facilitate the receptor. This
sensitizing effect endured for a short period of time, diminishing in 10 min.35) It should be noted
that this sensitizing effect was observed during inhibition of PG production by acetylsalicylic
acid (ASA).35)

A similar sensitizing effect of bradykinin was noted in the heat response of cutaneous C
nociceptors of cats38) and rats (a decrease in the threshold temperature by 5'C),39) and on the
mechanical response of cat joint receptors,40) but at as high as 10 flg (injection volume
unknown) or 10 flM, and 0.26 flg/O.3 ml (about 0.7 flM), respectively. The difference in the
concentration necessary to induce sensitization might be based on the different application
routes or accessibility in various tissues. In contrast, human pain rating was increased by in
tradermal injection of bradykinin ~ 0.1 nM, but hyperalgesia to heat was observed with only
bradykinin ~ 10 nM.28) In this human experiment, precedent pain sensation induced by brady
kinin might have influenced the subsequent pain rating to heat.

In carageenin-inflammatory pouch fluid, 0.4 ng/ml (about 0.4 nM) of bradykinin was
detected;14) this concentration is higher than the threshold concentration to sensitize the heat re
sponse of testicular polymodal receptors.
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Fig. 3 Excitation and sensitization of the polymodal receptors induced by inflammatory mediators.
Peri-stimulus time histograms are shown in the order of testing. 1: Effects of prostaglandin EP agonists on
the bradykinin (upper row) and heat (lower row) responses. From the second bradykinin application, no
discharge was induced by bradykinin (tachyphylaxis). With the addition of an EP3 agonist (M&B28767)
discharges reappeared. An EP2 agonist, butaprost, facilitated the heat response. Note that neither agonist
induced any discharge by itself. 2: Effects of bradykinin. 3: Effects of histamine. Both bradykinin and his
tamine excited the receptor and sensitized the following heat response.
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For the bradykinin receptor two subtypes (Bl and B2 receptors) were distinguished by phar
macological methods4!) and later confirmed by molecular cloning of cDNA.42-44) In testicular
polymodal receptors, Des-Arg9-BK (a Bl receptor agonist) did not induce excitation, and des
Arg9-[Leu8j-BK (a Bl receptor antagonist) failed to block BK effects. In contrast [Thi5,8,
D-Phe7j-BK (a B2 receptor antagonist) shifted the BK response curve to the right, and another
B2 antagonist, D-Arg-[Hyp3,Thi5,8,D-Phe7j-BK (NPC349) suppressed the bradykinin-induced
facilitation of the heat response. Therefore, the receptor subtype involved in excitation and sen
sitization of the heat response of testicular polymodal receptors by bradykinin (BK) is B2.35,45)

The induction of B1 receptors after a long incubation in vitro,46) in UV-induced inflamma
tion47) and NGF-induced hyperalgesic states,48) (described later in this review) has been
reported, but excitation by Des-Arg9-BK was not observed in preparations incubated in vitro for
longer than 5 hrs in a study of the author's lab. A recent report has shown that B1 receptors are
expressed not on sensory receptor terminals but on cells other than neurons.49) This might be the
reason why we did not observe any B1 effect.

Our observations on mediation through the B2 receptor for bradykinin effects on testicular
afferents are consistent with the reports on humans that pain induced by applying bradykinin to
a blister base is mediated through the B2 receptor.50)

3) Histamine-induced excitation and facilitatory effects on the heat response through HI
receptor subtype

In contrast to bradykinin, histamine induced excitation in only a portion of testicular poly
modal receptors even when the concentration was increased to 1000 fJ.M.5!) A sample recording
is shown in Fig. 3. In the entire recorded population of units, the proportion of units that
showed excitation (> 10 impulsesI 1 min application of histamine) increased roughly with an in
crease in concentration, namely 7% at 1 fJ.M, 26% at 10 fJ.M, 79% at 100 fJ.M, and 61 % at
1000 fJ.M.

A histamine (100 and 1000 fJ.M) response> 0.5 impulsesls was observed only in units with
conduction velocity (CV) of 10 mls or slower, but not in those with CV faster than 10 m/s,5!) al
though a small response was observed also in the latter group. Histamine-induced discharges were
significantly greater in units with CV :0:; 10 mls at all concentrations ~ 10 fJ.M, thus units were
tentatively divided into slow (CV :0:; 10 m/s) and fast (CV > 10 m/s) CV groups. In the slow-CV
group, significant excitation by histamine (1 min application) was observed at ~ 10 fJ.M whereas a
10 X higher concentration was necessary for the fast-CV group (in Table 1 of ref. No. 51). These
threshold concentrations required to excite the testicular polymodal receptors are much higher
than for bradykinin (see previous section). It is interesting to note that the difference in sensitivity
to histamine is related to conduction velocity, but not related to myelination.

Histamine excitation was characterized by a long latency (18 s at 10 fJ.M and 9 s at 100 fJ.M
for the slow-CV group) and long duration after washing,51) It also showed prominent tachyphy
laxis on repetitive application at an interval of ca. 10 min: the second response to 1000 fJ.M
histamine was reduced to 34% of the first one in the slow-CV group.

Histamine can also sensitize the heat response of the testicular polymodal receptors,51,52) as
shown in the sample recording in Fig. 3. It should be noted that this sensitizing effect was ob
served irrespective of preceding histamine-induced excitation. Significant facilitation of the heat
response was observed ~ 10 fJ.M in the slow-CV group, and ~ 100 fJ.M in the fast-CV group.
The magnitude of sensitization tended to increase with higher histamine concentrations. It has
been reported that histamine stimulates release of PG,53) but the sensitizing effect of histamine
was also observed under inhibition of cyclooxygenase by ASA, suggesting that PG production is
not the sole mechanism for this effect.
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The threshold concentration of histamine necessary to sensitize the heat response is thus
much higher (10,000 X) than that for bradykinin, and 10 X higher than that for PGE2 (see
below). A concentration slightly less than 10 f.tM has been reported in pouch fluid inflamed with
carrageenin,16) and in vivo microdialysis revealed that probe insertion induced release of about
40 nM histamine. 17) Close apposition of nerve fibers and mast cells containing histamineI8,19)
suggests the occurrence of a locally high concentration of histamine. Thus, sensitization of the
heat response in testicular afferents may occur naturally under inflammatory or tissue damaging
conditions.

The histamine (100 f.tM)-induced excitation of the slow-CV group was significantly sup
pressed by a H1 receptor antagonist (D-chlorphenilamine maleate) but not by other antagonists
(famotidine for H2 and thioperamide maleate for H3 receptor).51) The facilitatory effect of
histamine on the heat response was also suppressed by the H1 receptor antagonist in both slow
and fast-CV groups. 51) These results strongly suggest that both excitation and facilitation of the
heat response induced by histamine are mediated through the H1 receptor.

Involvement of the H1 receptor in histamine-induced excitation of cutaneous nociceptors was
previously noted by Lynn54) and the present observations suggest that visceral nociceptors share
a common histamine receptor subtype with cutaneous afferents mediating itch.55) Expression of
H1 receptor mRNA in primary sensory neurons has been demonstrated. 56)

4) Prostaglandins - excitation and facilitatory effects on the heat and bradykinin responses
Prostaglandin (PG) E2 up to 0.1 f.tM never induced excitation in testicular polymodal re

ceptors,37) and up to 10 f.tM induced only a quite small increase in discharge rate, if any, when
applied in naive preparations. However, clear excitation was sometimes induced by PGE2at 0.1
f.tM when applied shortly after bradykinin application. This excitation is considered to be
a facilitated response to residual bradykinin.37)

A weak excitatory effect of PGI2was observed in about one half of the multi-fiber recordings
at 0.1 f.tM where PGE2 never induced excitation. Thus, PGI2 is apparently more potent than
PGE2in its excitatory effect,57)

Excitation by PGs also was lacking in cutaneous34) and muscular afferents,58) and the absence
of a pain-inducing action by PGE2 by itself is suggested by behavioral and reflex studies.59) In
contrast to these results, clear excitatory effects were reported in cat knee joint afferents with
PGE2

60) and rats with PGI2,61) but this might be a consequence of both the surgical procedures
and the higher concentration used in these experiments.

A sensitizing effect of PGE2 on the bradykinin response was observed from 0.01 f.tM, a con
centration at which PGE2 by itself never induced excitation in naive preparations, with both
cumulative and simultaneous application methods. 37,57) The magnitude of sensitization increased
by application of a higher concentration of PGE2. A similar sensitizing effect was observed with
PGI2,57) but it was not confirmed by the use of the more selective IP receptor agonist, cicaprost.

The sensitizing effects of PGE2 on the bradykinin response are reported for cutaneous affer
ents,62) muscular group IV afferents58) and joint afferents.60) It is puzzling that a significant sensi
tizing effect of PGE2on the bradykinin response of nociceptors is not observed in rat skin-nerve
preparations in vitro,34) although hyperalgesic effects of PGE2in the skin have been reported in
humans.63,64)

A sensitizing effect on the heat responses was observed only from 100 X higher concentration
than needed to sensitize the bradykinin response.65) It was confirmed that 1 f.tM PGI2 also sen
sitized the heat responses of polymodal receptors. The magnitude of sensitization by 1 f.tM PGI2
was larger than that by 1 f.tM PGE2 (1.5 impulses/s with PGI2 whereas 0.5 impulses/s with
PGE2)·
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A similar sensitizing effect of PGEz on the heat response was observed in cat cutaneous noci
ceptors;66) the exact concentration needed is not clear because of intra-arterial infusion (O.S-S
f.tg/min).

The concentration of PGEz in inflamed tissue is reported to be on the order of 0.01 f.tM in
exudate and O.II-tM in abscessy,13,zO,Zl) The reported values of PG are high enough to sensitize,
at least, the bradykinin response.

For E series prostaglandins, three receptor subtypes are distinguished, EPl, EP2 and EP3, by
pharmacological methods67) and they are confirmed by cDNA cloning.68-70) An EP4 subtype
was later found. 71) For clarification of receptor subtypes involved, the sensitizing effects of ago
nists specific for the 3 receptor subtypes were studied. The bradykinin response was significantly
facilitated by the EP3 receptor agonist M&B28767 ;?: 10 nM (Fig. 3), but neither by the EPI
receptor agonist 17-phenyl trinor PGEz nor the EP2 receptor agonist butaprost,72,73) The con
centration-response curve for PGEz was not shifted to the right by the EPI antagonist,
AH6809.72) In contrast, the heat response was facilitated by all of these agonists, but butaprost,
which was totally ineffective for the bradykinin response, was the most potent among these three
(Fig. 3).73,74) Although the effects of antagonists could not be studied because of a lack of spe
cific receptor antagonists for EP2 and EP3, it was concluded from these results that sensitization
of the bradykinin response is mediated by the EP3 receptor subtype whereas the heat response
is sensitized through activation of the EP2 receptor subtype.

5) Effects of tissue acidosis on nociceptor activities
Proton action on afferents were mainly studied in rat skin-nerve preparation and cultured

dorsal root ganglion neurons.
Thirty-eight % of polymodal receptors recorded from rat skin-nerve preparations in vitro

were excited by lowering pH, with a threshold between 6.9 and 6.1, and the maximum response
was observed at pH S.2. No tachyphylaxis was observed. When low pH solution was applied
with a mixture of inflammatory mediators (S-HT, PG, histamine and bradykinin), the propor
tion of polymodal receptors excited and the magnitude of pH response increased,75) suggesting
either a synergistic or sensitizing role of inflammatory mediators.

Mechanical sensitivity of polymodal receptors was lowered after a long application of low pH
solution, and this sensitizing effect of pH was observed irrespective of whether a fiber was ex
cited by protons,76) a similar observation to those for histamine and PGs in testicular polymodal
receptors.

Sensitization of mechanical response by low pH is worth noting because sensitization of
cutaneous nociceptors has been somewhat puzzling: in human cutaneous polymodal receptors
mechanical sensitivity cannot be sensitized by bradykinin although its heat sensitivity can be sen
sitized,Z8) and sensitization of mechanical response of joint nociceptors by inflammatory media
tors has been well documented.4o,60) Mechanical thresholds of the polymodal receptor in the rat
skin-nerve preparations remained unchanged by applications of inflammatory mediators.34) In
addition, only a small subpopulation of specialized nociceptors, the high-threshold mechano
receptive A-delta-fibers, in the rat have thus far been shown to lower their threshold to
mechanical stimuli (with von Frey hair) in response to cutaneous injury.??) Now, local acidosis is
reported to effectively lower the mechanical thresholds of a majority of cutaneous nociceptors.

Proton has been considered to be an endogenous ligand of the receptor for capsaicin, which
specifically excites thin fiber afferents, and induce conduction block or degeneration of thin
fibers when applied in high concentrations. 78) Because capsaicin-sensitive populations of small
DRG neurons/9

) which are thought to be cell bodies of thin-fiber afferents, and those of cuta
neous polymodal receptors,76) do not completely overlap with pH-sensitive populations, and



77

PERIPHERAL MECHANISM OF HYPERALGESIA

a capsaicIn antagonist, capsazepine, blocks DRG neuron response to capsaicin but not to
protons,80) many researchers now throw doubt on this hypothesis.

6) Role of nerve growth factor (NGF) in sensitization of nociceptors
Nerve growth factor has been known as a survival factor for both sympathetic and sensory

neurons during development. The number of neurons that need NGF for survival gets smaller as
development proceeds. Despite this change in dependence on NGF for survival, many small
diameter sensory neurons in the adult have high-affinity NGF receptors (trk-A receptors) and
retrogradely transport NGF from their target tissues. This suggests that NGF has a physiological
role in the adult that is distinct from that in development. It has been revealed that animals sub
jected to pre- or postnatal anti-NGF treatments appear to suffer from a deceased sensitivity to
noxious mechanical and heat stimuli. This leads to a hypothesis that NGF play roles in pain
modulation.

Recently, increased production of NGF has been reported in actual and experimental inflam
matory conditions.81 -83) Skin keratinocytes appear to be major sources of NGF in vivo.

Adult NGF treatment induced mechanical hyperalgesia within 24 hours and heat hyperalge
sia within one hour. Because the mechanical threshold of peripheral nociceptors did not change,
mechanical hyperalgesia may be caused by central changes. In contrast, heat hyperalgesia is
considered to be of peripheral origin. 84,85) Since NGF stimulates mast cells to induce degranula
tion,85) substances released from mast cells are considered to be responsible for sensitization.
Later experiments have shown that heat hyperalgesia, but not mechanical hyperalgesia, induced
by NGF is blocked by Bl antagonist, but not by B2 antagonist.48) Because bradykinin response
is mediated through the B2 receptor in nociceptors in normal tissues,45,50) Bl receptors are con
sidered to be produced de novo after NGF treatment. In the work from the author's lab, NGF is
seen to increase the percentage of DRG neurons responding to bradykinin, but this response is
mediated through B2 receptors.86) In other experiments, no appearance of Bl receptor on affer
ent neurons and afferent fibers was confirmed.49) From these observations, it is concluded that
Bl receptors appear on cells other than afferents, and mediators released from these cells may
sensitize the nociceptor terminals.

7) Does suppression of action of inflammatory mediators alleviate nociceptor sensitization in
injury?

In model burns (heat stimulation at 55T for 30 s), neither B2 nor Bl antagonist suppressed
on-going activities appearing after this strong heat stimulation (unpublished observation from
the author's lab). Rather, they induced or facilitated on-going activities. The Bl agonist des
Arg9-BK sometimes induced excitation after 55T stimulation. Furthermore, the sensitized heat
response was not suppressed by these antagonists. For the moment, the involvement of brady
kinin in heat-induced sensitization requires further study.

In kininogen deficient humans, pain and hyperalgesia are also induced after burn injury,87)
suggesting that bradykinin is not essential in inducing pain and hyperalgesia after a burn. Simi
larly, King et a1.88) failed to block heat-induced sensitization of the heat response of polymodal
nociceptors of rabbits by a bradykinin-degrading enzyme (carboxypeptidase B).

In other inflammatory conditions such as those induced by ultra-violet irradiation, Freund's
complete adjuvant, or NGF, sensitized heat response was suppressed by a Bl antagonist des
Arg9-[Leu8]-BK but not by a B2 antagonist HOEI40.47,48,89)

Involvement of PGs in inflammatory pain has long been established, as seen in the facts that
analgesic action of non-steroidal anti-inflammatory drugs is explained mainly based on their cy
clooxygenase inhibiting action. Their involvement in heat-induced nociceptor sensitization was
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not clear, thus it was evaluated using acetylsalicylic acid (ASA).90) The heat and bradykinin
responses after 55T stimulation in the presence of ASA were greater than before 55"C stimula
tion, but smaller than in its absence. In addition, the duration of the sensitized state for the heat
and bradykinin responses was also shorter in the presence of ASA. The incidence of sponta
neous discharges after 55T stimulation was significantly lower in the presence of ASA than in
its absence. These results lead to the conclusion that PGs play some role in the heat-induced
sensitization of both the heat and bradykinin responses. Whether receptor subtypes for PGs
change in inflammatory condition as in the case of bradykinin, is not known because of the lack
of type-specific antagonists.

It must be additionally mentioned that in inflamed tissue, a new type of prostaglandin synthe
sizing enzyme, cyclooxygenase-2 (COX-2), is induced.91 ) This enzyme is a little different from
the constitutive type of cyclooxygenase, COX-I, suggesting the possibility of blocking excessive
PG production in inflamed tissue without interfering with PG production necessary for main
taining normal cell function. 92-95)

Histamine might also be involved in the heat-induced sensitization of nociceptors, because
suppression of the heat-induced sensitization could be obtained only by the application of a
combination of agents that would inhibit the production of PGs, would degrade bradykinin, and
would antagonize the effects of serotonin and histamine.88) The involvement of histamine in sen
sitization in other inflammation models has not been evaluated yet.

Anti-NGF might also alleviate nociceptor sensitization, but a need for a large amount of anti
body to NGF has prevented this kind of experiment. An antagonist against NGF receptor (trk
A) would facilitate the experiment.

RECRUITMENT OF "SILENT (SLEEPING)" NOCICEPTORS
IN INFLAMED TISSUES

It is long known there are many C-afferent fibers in cutaneous nerves. In human peroneal
nerves, for example, only 12% are sympathetic units, while 45% are C mechano-heat receptors,
13% are C-mechanoreceptors, 6% are C-heat nociceptors, and the remaining 24% are mech
ano-insensitive-heat insensitive units (CMiHi). One third of these CMiHi units were excited by
topically applied mustard oil. After application of mustard oil!capsaicin, C-mechanoreceptors,
C-heat nociceptors or CMiHi units were sensitized to heating and/or to mechanical stimuli.96

)

These CMiHi units are named "silent" or "sleeping" nociceptors. In the cat knee joint, induction
of inflammation by kaolin and carrageenin also excites previously mechanically insensitive
C-fibers and enhances their responses to mechanical manipulation of the corresponding tissue.97)
Recruitment of these "sleeping (silent) nociceptors" in inflammatory conditions will increase the
barrage of afferent impulses arriving at the spinal cord, thus facilitating the responses of noci
ceptive neurons in the spinal cord as well as in the upper level nociceptive pathways. However,
the existence of "silent nociceptors" has not been confirmed in all afferent systems (negative
examples: canine testicular afferents (unpublished observation from our lab), rat gall bladder af
ferents (personal communication)). It is not known what awakens these "sleeping" nociceptors.

INTRACELLULAR MECHANISM OF SENSITIZATION

1) Increasing intracellular cAMP facilitates the heat response but suppresses the bradykinin
response

Among the receptors of inflammatory mediators mentioned above, the PGE receptor EP2
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subtype and the IP receptor for PGlz are known to stimulate adenylyl cyclase and to increase in
tracellular cyclic AMP, whereas some isoforms of the EP3 subtype are reported to suppress
cAMP production.67

) As described above, PGEz, through the EP2 receptor, and PGlz facilitate
the heat response, whereas PGEz, through activation of the EP3 receptor, facilitates the brady
kinin response. Thus, it can be expected that the heat response and the bradykinin response are
modified differently by activation of adenylyl cyclase.

Response to bradykinin
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Fig. 4 Increasing cAMP facilitates the heat response but suppresses the bradykinin response of testicular
polymodal receptors.
Upper row; response to bradykinin; lower row: response to heat. FO: forskolin 10 [tM, DDFO: 1,9 dide
oxy-forskolin (inactive analog of forskolin) 10 [tM, cAMP; mixture of dibutyryl cAMP (20-100 [tM) and
3-isobutyl-1-methyl xanthine (20-100 [tM). **; P <0.01 compared with the control response (paired t test).
n.s.: not significant.
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Stimulation of adenylyl cyclase by forskolin (5-10 f.tM) seldom induced excitation in poly
modal receptors. A mixture of dibutyryl cAMP (a membrane permeable analog of cAMP,
abbrev. dBcAMP, 20-100 f.tM) and isobutyl-methyl xanthine (inhibitor of phosphodiesterase,
abbrev. IBMX, 20-100 f.tM) did not induce excitation.98)

Forskolin reversibly facilitated the heat response.99) Similarly, a mixture of dBcAMP and
IBMX facilitated the heat response, but the inactive analog of forskolin, 1,9 dideoxy-forskolin
(DDFO, 10 f.tM) did not (Fig. 4).98)

In three units, prostaglandin-induced sensitization of the heat response was studied in the
presence and absence of an adenylyl cyclase inhibitor, 2,5-dideoxyadenosine (DDA, 200 f.tM for
10 min). The magnitude of sensitization was smaller in the presence of DDA in all three units,
suggesting that PG-induced sensitization of the heat response is mediated by activation of
adenylyl cyclase.

In contrast, the bradykinin response was suppressed by forskolin 100) or by a mixture of
dBcAMP and IBMX98) (Fig. 4). This difference from the heat response was not based on the
units used for the bradykinin response and for the heat response, because both effects were ob
served in the same single fiber. In close agreement with our results, Kress et al. also reported
that cAMP analog facilitates the heat response of rat cutaneous nociceptors, but not the brady
kinin response using rat skin-nerve preparation in vitro. 101)

In contrast to our results and those obtained in the rat skin-nerve preparations, however,
several studies have shown the facilitatory effects of cAMP on bradykinin responses. 102.103)
The common factor in these studies is that the neurons used were in early development stages,
and in culture. 103) In cultured DRG neurons, sensitivity to bradykinin is known to be quite vari
able.104-106) The intracellular machinery that intervenes between the bradykinin receptor and ion
channels may possibly be different between adult neurons in vivo and those in developing neu
rons, or neurons maintained in culture. Alternatively, the effects of cAMP might vary depending
on cellular activities which are yet unknown.

In order to explain the opposite effects of cAMP on the bradykinin and heat responses, we
might consider sensitizing mechanisms for heat and bradykinin responses that could be differen
tially influenced by cAMP. As noted above, the bradykinin response of testicular polymodal
receptors is mediated through the B2 receptor which activates phospholipase C to increase in
tracellular diacylglycerol (DAG).107) Bradykinin may by this route activate protein kinase C
(PKC), an enzyme thought to be involved in excitatory responses. 108,109) Some reports have
demonstrated inhibitory interactions between A kinase and C kinase.110-112) If such interactions
also exist in the polymodal receptor terminals, then elevating cAMP leading to A-kinase activa
tion might in turn inhibit bradykinin responses that depend on C-kinase activity.

On the other hand, the opposite effects of cAMP on these two responses fits well with our
observation that the PGE receptor subtype involved in the sensitization of the heat response is
the EP2 subtype which stimulates adenylyl cyclase and that involved in the bradykinin response
is the EP3 subtype which suppresses adenylyl cyclase. Suppression of the bradykinin response
by an increase in cAMP is apparently contradictory to the long-standing hypothesis that the
hyperalgesic effect of PGE2 is mediated by an increase in cAMP,113,114) but that hypothesis is
based on experiments using mechanical stimulation. The EP receptor subtype involved in the
sensitization of the mechanical response remains unknown. This response may be mediated
through the same subtype as the heat response.

2) Effects of phorbol esters which activate protein kinase C (PKC)
There is considerable evidence that activation of phospholipase C is involved in the responses

to bradykinin through B2 receptors107) and to histamine through HI receptors,11S) and that
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activation of phospholipase C results in increased intracellular concentrations of inositol tris
phosphate and DAG. The latter is known to activate PKC, 116) which is found in high concentra
tions in the nervous system. In neuroblastoma-glioma hybrid cells (NG-108 cells) activation of
PKC by DAG has been shown to mimic the inward current induced by bradykinin. 108) It has
also been suggested that activation of PKC is involved in the effect of bradykinin on primary af
ferents. 117) We therefore studied effects of phorbol esters, which stimulate PKC, on polymodal
receptor activities.

Phorbol 12,13-dibutyrate (PDBu), a phorbol ester, induced excitation in polymodal receptors
after a long latency (longer than 5 min at 1 IlM) and lasted long after rinsing out the PDBu. 118)

The magnitude of excitation was, however, much smaller than those induced by histamine or
bradykinin, although the discharge rate significantly increased at 2:: 0.1 IlM.

PDBu 2:: 0.01 IlM also facilitated the heat response. Facilitation by PDBu at 0.01 IlM disap
peared in 5 min, but facilitation induced by PDBu > 0.1 IlM lasted longer than 25 min. 118) The
magnitude of facilitation by PDBu at 1 IlM was comparable to that induced by bradykinin or
histamine. A similar facilitatory effect was also induced by an another phorbol ester, phorbol
12-myristate 13-acetate (PMA). This facilitatory effect was not induced by an inactive analog of
phorbol ester, 4-a phorbol 12,13-didecanoate (0.1 IlM). Since this facilitatory effect of PDBu at
0.1 IlM was not observed in the presence of staurosporine (1 IlM, 13 min), 118) a protein kinase
inhibitor, it was confirmed that this facilitatory effect was induced through activation of PKC.

The study clearly showed that the concentration of PDBu needed to induce a significant
augmenting effect on the heat response of polymodal receptors was 2:: 0.01 IlM, whereas a ten
times higher concentration (2:: 0.1 IlM) was necessary to excite them. Higher concentrations of
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Fig. 5 Phorbol ester has dual effects on the bradykinin as well as histamine responses, depending on application
period.
Ordinate: change induced by phorbol ester in the bradykinin (A) or histamine (B) response. aft PDBu:
PDBu 0.1 lJ.M was applied for 5 min prior to bradykinin application; mix PDBu: PDBu 0.1 lJ.M was
applied simultaneously with bradykinin. *: p <0.05; **: p <0.01 compared with the control bradykinin (or
histamine) response (paired t test).
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bradykinin and PGE2 were also required to excite polymodal receptors than to facilitate their
heat responses.35,65)

The effects of phorbol esters, both excitatory and facilitatory, were observed at a higher con
centration (1 fJ.M) in other sensory nerve preparations. Il9' 121) Possible reasons for this concentra
tion difference may be due to differences in the species used and in the routes by which PDBu
was applied.

When PDBu was applied previous to bradykinin application, as used for the heat response,
the bradykinin response was suppressed l22) (Fig. 5). When PDBu was applied simultaneously
with bradykinin, clear facilitation of the bradykinin response was observed l22) (Fig. 5). These
results suggest that two mechanisms, facilitated and inhibited by PKC, are involved in the brady
kinin response of polymodal receptors. An inactive analog of phorbol ester, 4-a phorbol 12,13
didecanoate (0.1 fJ.M), induced no significant effect on the bradykinin response, confirming that
both facilitatory and suppressive effects of PDBu are mediated through activation of PKC.

In order to demonstrate whether PKC activation is implicated in the bradykinin response in
testicular afferents as in cultured cells, the effects of bradykinin were studied in the presence of
staurosporine. For this study, more than a I-hour interval elapsed between bradykinin applica
tions to prevent tachyphylaxis. Bradykinin-induced excitation was suppressed by staurosporine,
and sensitization of the heat response was also suppressed.

Quite similar to the bradykinin response, the response to histamine was either facilitated or
suppressed by PDBu, depending on the application period (Fig. 5, unpublished observation
from author's lab). An absence of the effects of 4-a phorbol12,13-didecanoate (0.1 fJ.M) on the
histamine response confirmed involvement of activation of PKC in PDBu effects.

These similarities in the effects of phorbol ester suggest that some intracellular processes are
common between the bradykinin and histamine actions on the nociceptors.

Application of phorbol ester for longer than several hours is known to desensitize PKC,123,124)
and desensitization of phospholipase C in 5 min by phorbol ester through PKC activation 125) has
also been reported. These mechanisms may be implicated in the suppression of the bradykinin
response by PDBu pretreatment.

CONCLUSIONS

In this review, the sensitizing effects of bradykinin, histamine, PGs and protons were demon
strated, and possible involvement of these substances in inflammation-induced hyperalgesia was
discussed. It was also noted that the receptor subtypes for bradykinin and prostaglandin syn
thesizing enzyme, COX, differ in inflamed conditions, indicating the possibility of pain being
differentially modulated between normal and inflamed tissues. In this review, the interaction of
inflammatory mediators was not discussed. Such interaction may occur, because many sub
stances are released into the tissue at the same time, and some of them share a common intracel
lular pathway as described in the chapter of the intracellular mechanism. This issue remains
open for future study.
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