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ABSTRACT

The polyol pathway is one of the possible biochemical mechanisms by which hyperglycemia could impair
the function and structure of the cells affected by diabetic complications. As possible hypothesis for the
pathogenesis of diabetic complications, the polyol osmotic theory, alterations in myo-inositol and sodium
metabolism, intermediary metabolites, abnormal changes of the redox state (NADH/NAD? ratio) and an
abnormality of kinase C dependent protein phosphorylation have been proposed. Recently, increasing evi-
dence suggests that glycation and oxidative stress may have a cross-link with polyol pathway, contributing to
the development of diabetic complications.

If hyperglycemia-induced polyol pathway hyperactivity has an important role in the etiology of late-onset
diabetic complications, the inhibition of aldose reductase (AR), a rate-limiting enzyme of the pathway, could
become a key element in the prevention and reversal of diabetic complications. Recent evidence from both
animal experiments and clinical studies has emerged to support this theory, resulting in the development of
drugs available for the clinical treatment of diabetic neuropathy. From the results obtained mainly in animal
models of diabetic complications, it is well recognized at present that AR inhibitors have a positive inhibitory
effect on neuropathy, retinopathy, nephropathy, keratopathy, cataract-formation, possibly infection and at-
herosclerosis.

It is now clear that AR inhibitors may offer various benefits to patients with diabetic complications. How-
ever, more extensive efforts are needed for the evaluation of their effects.
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INTRODUCTION

The etiology of late-onset diabetic complications is not yet clear but is probably multifactor-
ial, and related to the quality of glycemic control and to genetic factors. Several general
theories have emerged, each based on the premise that either hyperglycemia or some related
metabolic abnormalities are the primary events which trigger tissue damage and result in the de-
velopment of diabetic complications (Fig. 1). The polyol pathway is one of the possible bio-
chemical mechanisms by which hyperglycemia can impair the function and structure of cells
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Figure 1: Main hypotheses of pathogenesis on diabetic complications and prevention and/or improvement by
insulin treatment.

affected by diabetic complications.?~!2) Other possible contributory factors include alteration in
protein structure and metabolism by accelerated glycosylation, microvascular changes leading to
reduced availability of oxygen, and abnormalities in platelet functions as well as in growth fac-
tors.?)~12)

If hyperglycemia-induced polyol pathway hyperactivity has an important role in the etiology
of late-onset diabetic complications, the inhibition of aldose reductase (AR), a rate-limiting
enzyme of the pathway, could become a key element in the prevention and reversal of diabetic
complications.?~1%12) Recent evidence from both animal experiments and clinical studies has
emerged to support this theory, resulting in the development of drugs available for the clinical
treatment of diabetic neuropathy.

General aspects of polyol pathway and aldose reductase, and their relationship to diabetic
complications

The polyol pathway

The polyol pathway consists of two steps: nonphosphorylated glucose is first reduced to sor-
bitol by the enzyme, AR (alditol: NADP* oxidoreductase [EC 1. 1. 1. 21]) and the resulting
sorbitol is then changed to fructose by sorbitol dehyrogenase (L-iditol: NAD*2-oxidoreductase
[EC 1. 1. 1. 14]) (Fig. 1). AR is one of a family of aldehyde reducing enzymes with a broad
substrate specificity.?)"1% Under normal physiological conditions, glucose is converted to glu-
cose-6-phosphate by hexokinase. Saturation of hexokinase in the presence of excess glucose as
occurs in the diabetic state results in the conversion of glucose to sorbitol by AR and then to
fructose by sorbitol dehydrogenase (SDH). Under euglycemic conditions, the higher affinity of
hexokinase for the glucose substrate ensures that very little sorbitol is formed. However, under
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hyperglycemic conditions, there is a considerable increase in intracellular sorbitol levels.
Namely, AR has a high capacity and a low affinity for glucose, but sorbitol dehydrogenase
(SDH) has a high affinity and a low capacity for sorbitol. Hence, glucose flux mediated by AR is
very low in this pathway except during hyperglycemia, and sorbitol oxidation is relatively inde-
pendent of the sorbitol concentration within the physiological range.!®-!9 The activity of this
pathway in relation to glucose metabolism is only about 3% under normal conditions. However,
this activity increases 2—4 times in a concentration-dependent manner as the ambient glucose
concentration rises above physiological levels. Thus, in response to hyperglycemia, sorbitol accu-
mulates in complication-prone tissues that have a high capacity for polyol pathway enzymes and
in which glucose entry is not rate-limiting for glycolysis or mediated by insulin. Once sorbitol
has been produced, it does not easily diffuse across cell membranes;*»'> this intracellular accu-
mulation of sorbitol may be a factor in the etiology of diabetic complications.

A possible physiological role of AR

AR has been found in a number of tissues, including those affected in diabetes such as nerve,
retina, kidney, aorta, lens and cornea.” However, the physiological role of this pathway has re-
mained unclear since its discovery was first made by Hers!® in sheep seminal vesicles. Recent
findings suggest that this pathway may have an important role in the regulatory system of osmo-
lar changes between the intracellular and extracellular milieu.!”®) A progressive rise in AR ac-
tivity and synthesis of sorbitol in amounts related to the magnitude of the change in extracellular
osmolarity was induced by exposing cells derived from rabbit renal medulla to raised extracellu-
lar sodium and chloride ions.’® Also, increasing amounts of AR mRNA in response to increas-
ing osmolarity of the culture medium, were expressed in cells derived from rabbit inner renal
medulla.” A similar phenomenon was observed in in vivo studies using the kidney?” and in in
vitro investigations using other tissues.?!) Thus, it seems that an increased osmolarity of the ex-
tracellular milieu can trigger an expression of the aldose reductase gene and activation of this
enzyme in some cells including renal medullary cells.

Current concepts of the mechanisms involved in the development of polyol pathway-associated
diabetic complications

The polyol osmotic theory, alterations in myo-inositol and sodium metabolism, intermediary
metabolites, abnormal changes of the redox state (NADH/NAD" ratio) and an abnormality of
kinase C dependent protein phosphorylation have been proposed as possible hypothesis for the
pathogenesis of diabetic complications.?® Recently, increasing evidence suggests that glyca-
tion???%) and oxidative stress'®>Y may have a cross-link with polyol pathway, contributing to
the development of diabetic complications.

Williamson et al.”) have proposed the role of hypoxia and hyperglycemia-induced pseudohy-
poxia, whereby an increase in NADH/NAD™ and associated metabolic imbalances contribute to
vascular changes. The proposal is attractive because the hyperglycemia-induced redox imbalance
is largely the result of increased oxidation of sorbitol to fructose being coupled to the reduction
of NAD* to NADH in the second step of the polyol pathway. It is suggested that hypoxia and
hyperglycemia-induced pseudohypoxia may play an important role in the pathogenesis of
diabetic complications. Recent findings in expereimental models suggest that hyperglycemia-
induced polyol pathway hyperactivity may play a role in the neurovascular dysfunction that is
accompanied by impaired nerve conduction velocity.1?»2526) In addition to metabolic factors, it
is likely that vascular disorders caused by polyol pathway hyperactivity may contribute to the
development of some complications of diabetes that involve nerve and the retina. More recently,
Ishii et al.?”) reported that PKC § inhibitor ameliorated the glomerular filtration rate, albumin
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excretion rate, and retinal circulation in diabetic rats in a dose-dependent manner, in parallel
with its inhibition of PKC activity. The theory that hyperglycemia-induced PXC hyperactivity
may contribute to the development of diabetic complications is attractive, but the relationship
between polyol pathway hyperactivity and abnormal PKC activity remains partially unclear.

Effect of AR inhibitors on diabetic neuropathy

AR inhibitors

Although the exact mechanism is unknown, AR appears to be the possible link between in-
creased polyol pathway activity and the development of some diabetic complications. Therefore,
in recent years, preventive or therapeutic approaches for diabetic complications based on the
polyol pathway theory have focused on the development of potent AR inhibitors. The first
report concerning AR inhibitors, published in 1965 by Hayman and Kinoshita,?® discussed the
inhibitory effect of these agents on metabolizable fatty acids. However, the first successful
prevention of diabetes-associated complications was achieved with tetramethylene glutaric acid
(TMG) (AY-20,037), which inhibited cataractogenesis in whole lens incubates after being given
to rabbits by intraocular injection.’>*) Of the large number of AR inhibitors developed, alrest-
atin (AY-22,284) was the first to reach the clinical trial stage and was also the first orally effec-
tive inhibitor to be developed.

Since then, a large number of AR inhibitors have been generated and studied in experimental
animal models, but only limited number of the drugs have reached the clinical trial stage.” All
of the compounds listed in Table 1 are now either available for clinical use, such as epalrestat
for neuropathy, or in the clinical trial stage. However, AD-5467 and tolrestat were dropped due
to minimal efficacy for neuropathy in diabetic patients. In addition to the AR inhibitors listed in
Table 1, zopolrestat is now at the clinical trial stage in USA.?» The developed AR inhibitors can
be roughly classified into four groups: carboxylic acids, flavonoids, hydantoins, and other com-
pounds.” Among the AR inhibitors in Table 1, epalrestat , FK-366, AD-5467, tolrestat, TAT
and NZ-314 belong to the carboxylic acid group, as does zopolrestat. On the other hand, SNK-
860 is classified into the hydantoin group. However, none of the flavonoid compounds has
reached the clinical trial stage.

Effect of AR inhibitors on diabetic complications

From the results obtained mainly in animal models of diabetic complications, it is well
recognized at present that AR inhibitors have a positive inhibitory effect on neuro-
pathy,” 292630733 retinopathy,” 737 nephropathy,”~"»3¥):3) keratopathy,”~") cataract-
formation, 4941) and possibly infection,*?»*3 and atherosclerosis.*" 45

Although, clinically, there has been a massive concentration of efforts on diabetic neuro-
pathy,®~7) not all of the assessed studies support the polyol pathway theory.”™ A double-blind
study in patients with diabetic neuropathy by Sima et al.*” gave exciting evidence of the efficacy
of sorbinil, an aldose reductase inhibitor, against morphological signs of degeneration in sural
nerve biopsies, accompanied by a decrease in the nerve sorbitol level and an increase in the
nerve conduction velocity. A similar observation was reported by Greene et al.*®) using another
aldose reductase inhibitor, FK-366 (zenarestat). Although there have been a few positive results
in other areas, the treatment of diabetic retinopathy with epalrestat over three years was particu-
larly impressive, with drug-treated patients showing improvements in retinal structure?>*% and
electroretinogram.*” Cunha-Vaz et al.®V) found that alterations of the blood-retinal barrier in-
creased significantly less in the sorbinil-treated group compared with the placebo group during
the 6-mo study period, and that there was also a lower incidence of capillary microaneurysms of
the retina in the sorbinil group. The Sorbinil Retinopathy Trial Research Group®® reported that
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Table 1. Chemical structure and activity of aldose reductase inhibitors which have reached the clinical
evaluation for “triopathy” complications (neuropathy, retinopathy and nephropathy) in Japan.

Name Structure Company Inhibitory activity of Pharmacokinetics of
ARI (ICs0 x10°° M) ARI®

HPAR  RLAR  Tmax(h) T1/2(h)

Epairestat -CHZCO0R Ono 0.026 0.01 2 0.76
(ONO-2235) e 3

?HZCOOH

cl 0 Br
FK-366 m Fujisawa - 0.044 09=+0.2 77+05
HaC., gﬁ: HFJ
AD-5467 s Takeda 0.051 0.129 1.3+£12 05-30
NH

éHICOOH
Q,

SNK-860 A Sanwa 0022 13 171
ONH2
HaCO.
S
Tolrestat F‘%/\éfjmm Ayerst 0.04 13:01 92
(AY-27773)

NmuN
rld ILCH:COOH
TAT O o Wakamoto 0.028 0.021 1.0 1.49
feri Q 0
NZ-314 bc"""\( Fonacom Nihonzoki 0.062 14+06 18x04

Note : HPAR = human placenta aldose reductase; RLAR = rat lens aldose reductase.
2Single administration in healthy subjects: ONO-2235, AD-5467 —200 mg p.o., FK-366 — 150 mg p.o.,
NZ-314 — 50 mg p.o., TAT =+ 20 mg p.o., SNK-860 — 15 mg p.o.

the treatment of 497 IDDM patients with sorbinil at a dose of 250 mg daily or placebo for
30—50 months resulted in no significant inter-group difference in the severity level but that the
number of capillary microaneurysms increased at a slightly lower rate in the sorbinil group than
in the placebo group. Although past clinical studies of AR inhibitors on diabetic retinopathy are
limited in number, these findings suggest that AR inhibitors play an important role in preventing
the development and progression of diabetic retinopathy, indicating the need for further clinical
study.

Effect of AR inhibitors on diabetic neuropathy and its possible mechanisms

AR, a principal enzyme of the polyol pathway in the peripheral nerve, is present in the
Schwann cell and in pericytes and endothelial cells of endoneurial capillaries.’® More re-
cently, intense immunostaining for AR has been found in the paranodal region and the Schmidt-
Lanterman clefts as well as in the terminal expansions of paranodal myelin lamellae and nodal
microvilli.>)

Under hyperglycemic conditions, there is a considerable increase in intracellular sorbitol le-
vels in the peripheral nerve, exacerbated by the relative inability of this metabolite to cross the
cellular membrane. This results in osmotic damage, and metabolic, structural and functional
abnormalities. ") It is also possible that damage of the peripheral nerve may result from deple-
tion of intracellular cofactors, such as nicotinamide-adenosine dinucleotide phosphate
(NADPH), due to increased flux through the pathway.”) Moreover, accumulations caused by
hyperglycemia-induced polyol pathway hyperactivity have also been associated with the deple-
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tion of myo-inositol. This may in turn decrease sodium-potassium adenosine triphosphatase
(Nat/K*-ATPase) activity, resulting in changes in cellular metabolism and the membrane struc-
ture of the peripheral nerve.*19 All of these conditions were improved by treatment with AR
inhibitors. However, a recent investigation of the reciprocity of sorbitol accumulation and myo-
inositol uptake as part of cellular ‘osmostasis’ indicates that changes in nerve myo-inositol might
be a parallel and functionally irrelevant event.®)

Concerning the pathogenesis of diabetic neuropathy, both metabolic and vascular defects
have been implicated but the interrelationships between them are poorly understood. Endoneu-
rial blood flow is diminished shortly after the induction of diabetes in rats. Vasodilator treatment
or pharmacologic adrenergic sympathectomy increases endoneurial blood flow and nerve con-
duction velocity, implicating neural ischemia as well in the early and reversible slowing of nerve
conduction velocity.!® AR inhibitors corrected the delayed nerve conduction velocity and de-
creased endoneurial blood flow,!92%:20) also improved the impaired endothelium-dependent
aortic relaxation (thought to be nitric oxide-[NO]-mediated) in diabetic rats.’® A more recent
study suggests that the AR inhibitor-sensitive component of conduction slowing and the reduced
Nat/K*-ATPase activity in diabetic rats may in part reflect impaired nitric oxide activity, thus
comprising a dual metabolic-ischemic pathogenesis.’? As for other vascular factors in the devel-
opment of diabetic neuropathy, 2,3-diphosphoglycerate (DPG) in red blood cells (RBCs),
platelet aggregation and RBC deformability are of interest. 2,3-DPG has a high affinity for
hemoglobin and plays an important role in regulating the binding of oxygen to hemoglobin. It is
well-known that a low concentration of 2,3-DPG reduces the ability of RBCs to release oxygen,
resulting in tissue hypoxia, and that the 2,3-DPG concentration in RBCs is decreased in patients
with diabetic ketoacidosis.’?*? The AR inhibitor, SNK-860, which restored nerve sorbitol le-
vels, nerve Na™/K*-ATPase activity, and nerve conduction velocity, also increased 2,3-DPG
levels in RBCs and endoneurial blood flow in diabetic rats.5? This increase in RBC 2,3-DPG le-
vels by SNK-860 may cause an increment of oxygen supply to the peripheral nerve in diabetic
rats, contributing in part to the improvement of delayed nerve conduction velocity. Takiguchi et
al.%? observed that the treatment of diabetic rats with ONO-2235 (epalrestat), an AR inhibitor,
for 8 weeks, prevented the anti-aggregating activity of plasma, as did insulin treatment. More-
over, Robey et al.5 reported that sorbinil could partially prevent the decreased RBC deforma-
bility in diabetic rats. All of these findings and other observations®)—%0) strongly suggest that AR
inhibitors can cause an increment of endoneurial microcirculation of the peripheral nerve in
diabetic rats, contributing to the improvement of diabétic neuropathy.

It is well established that the effect of AR inhibitors on diabetic neuropathy is mainly via the
metabolic changes due to the inhibition of the polyol pathway activity. However, considering the
above findings, it is strongly suggested that vascular factors may also play an important role in
the effects of AR inhibitors on diabetic neuropathy. The possible mechanisms of AR inhibitors
in diabetic neuropathy are summarized in Fig. 2.

AR inhibitors’ action on diabetic complications in other areas

Polyol pathway and atherosclerosis

It has been hypothesized that a reduction in Na*/K*-ATPase activity is the major pathogenic
step in the development of hypertension.®”) This results in the accumulation of intracellular Na™
and ultimately leads to significant increases in cytosolic-free Ca?* concentrations [Ca®*]i in vas-
cular smooth muscle cells. In diabetes, low Nat/K™-ATPase activity in tissues is observed,
which may be linked to the polyol pathway.

To examine this possibility, sorbitol, Nat/K*-ATPase activity and [Ca**]i were measured
using cultured rabbit aortic smooth muscle cells. Epalrestst (100 uM), an AR inhibitor, blocked
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Figure 2: Possible mechanisms of aldose reductase inhibitors in improvement of diabetic neuropathy.

glucose-induced changes in sorbitol and myo-inositol metabolism.*? The increment of cytosolic-
free Ca?*, induced by 30 mM glucose was completely reduced by epalrestat to control levels.5®
Although in the presence of 30 mM glucose, the ouabain binding capacity was significantly re-
duced and *’Rb uptake was also markedly decreased, epalrestat restored the *?Rb uptake but
failed to restore the ouabain binding capacity.

These findings suggest that increased sorbitol levels and decreased Na*/K*-ATPase activity
in culture rabbit smooth muscle cells may be important pathogenic factors in the development of
hypertension and atherosclerosis in diabetes, and that AR inhibitors may be useful for their
prevention. From these data and observations by others,?2-23)44),46)62)63)66) 3 hypothesis for the
development of atherosclerosis in diabetes based on polyol pathway cascade is summarized in
Fig. 3.

Polyol pathway and neutrophil function
Diabetic patients have increased susceptibility to infection because of an impaired host
defense mechanism. Although many factors may contribute to impaired host defense, in particu-
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Figure 3: Possible mechanisms by which development of atherosclerosis in diabetes mellitus may be linked to in-
creased polyol pathway activity.

lar, polymorphonuclear leukocyte (hereafter referred to as neutrophil) function plays an impor-
tant role. Neutrofil function in well-controlled diabetic patients differs little from that in normal
subjects,®) suggesting that dysfunction is in part related to poor metabolic control induced by
high glucose concentrations.

Wilson*? reported that neutrofils have an active polyol pathway, which may be the cause of
the decreased killing ability of neutrophils observed in diabetes. However, the mechanisms of al-
tered cell function in diabetes are not fully understood. As bactericidal function is partially
mediated by oxidative killing, the biochemical events necessary for causing the oxidative burst
are those most susceptible to impaired glucose metabolism. These abnormalities may therefore
be associated with the induction of the polyol pathway, which competes for supplies of nicotina-
mide adenine dinucleotide phosphate (NADPH). Boland et al.”® demonstrated that the im-
paired killing of Esherichia coli in diabetic patients was improved by treatment with an AR in-
hibitor, ponalrestat. More recently, Kawamura et al.*3) measured lucigenin-enhanced chemilumi-
nescence stimulated by phorbol myristate acetate as a function of neutrophils in high glucose
concentration. The peak value of lucigenin-enhanced luminescence in human neutrophils was
decreased by 86% by exposure to 40 mM glucose. This reduction was reversed by 91% with the
addition of 10 uM SNK-860. It has been reported that the lucigenin-enhanced luminescence re-
sponse, induced by superoxide and only weakly by the hydrogen peroxide and myeloperoxidase-
H,0,-halide systems, as an indicator of superoxide anion production and PMA, is decreased in
diabetic patients’? and in high-glucose medium in vitro.” In the in vivo study, using neutrophils
from poorly controlled diabetic patients, epalrestat, an aidose reductase inhibitor significanty
improved the impaired Cypridina luciferin-analog-dependent chemiluminescence and L-de-
pendent chemiluminescence in patients with diabetes mellitus.” The results obtained in human
neutrophils suggest that, in diabetic patients, the increase of the polyol pathway activity by high
glucose concentrations may reduce the depletion of superoxide anion on the membrane of
human neutrophils, resulting in the dysfunction of the oxidative killing. Therefore, it appears
that AR inhibitors may also be capable of preventing the aggravation of various infections in
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diabetic patients.

CONCLUSION

Recent findings have shown a strong cross-linking between polyol pathway and glycation in
the pathogenesis of diabetic complications. In addition to this, it is an interested possibility that
increased synthesis of methylglyoxal modifying nucleic acid and protein’ may be partially re-
lated to hyperglycemia-induced polyol pathway hyperactivity, resulting in diabetic complications
(Fig.4). It is now clear that AR inhibitors may offer various benefits to patients with diabetic
complications. However, more extensive efforts are needed for the evaluation of their effects.
Time will tell whether the hopes for these drugs are to be fulfilled.
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