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ABSTRACT

The immunohistochemical localization of basic fibroblast growth factor (FGF-2) in the submandibular
glands of the rat was investigated by use of an antiserum to FGF-2. Nerve fiber bundies with FGF-2-immu-
noreactivity were found in association with interlobular ducts and blood vessels; they dissociated into single
immunoreactive nerve fibers perhaps to terminate in proximity to acinar cells, or to form a reticular fiber
network within the tunica adventitia of blood vessels. The FGF-2-immunoreactive neurons were located in
the submandibular ganglia, but not in the superior cervical ganglia; hence, at least some of these immunore-
active nerve fibers probably come from the submandibular ganglia and are of parasympathetic origin. Most
of the epithelial cells of the intercalated and collecting ducts showed notable FGF-2 immunoreactivity. The
characteristic distribution of FGF-2 immunoreactivity in both the neuronal and epithelial tissues of the sali-
vary glands suggests a role of this growth factor in complex physiological processes within the salivary
glands.
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INTRODUCTION

Basic fibroblast growth factor (FGF-2) stimulates the mitogenic activities of a variety of me-
soderm- and neuroectoderm-derived cells,»® as well as to facilitate the survival and differentia-
tion of these cells.*¥ It has been detected biochemically in the retina,” corpus luteum,® adrenal
gland,” kidney,® placenta,” macrophages,'® and prostate.!) Recent immunohistochemical
studies showed FGF-2 localized not only in peripheral tissues!>!) but also in neuronal and neu-
roglial elements of the brain.’*?% In peripheral nerves, FGF-2 is abundant within the somatic
motor and sensory nervous systems.*21"23) However, there are few studies on FGF-2 in the pe-
ripheral autonomic nervous system.

The secretory activity of the salivary glands is controlled by the autonomic nerves. It has been
proposed that parasympathetic nerve fibers regulate the viability of glandular cells, because their
transection or interruption produces degeneration of the acinar cells.>*=29 We sought to deter-
mine whether FGF-2, like nerve growth factor, is localized to the salivary glands and/or to the
parasympathetic nerves that innervate the glands.?”* Using a FGF-2 antiserum that has been
characterized by immunoblot,'*161%2%30) we investigated the distribution of FGF-2-like immu-
noreactivity in rat salivary glands with special attention given to the autonomic nerves.
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MATERIALS AND METHODS

Animals

Ten male Sprague-Dawley rats weighing 100 to 150 g were used in this study. The animals
were kept on a 12h:12h light-dark cycle, and given food and water ad libitum. The following ex-
periments were conducted in accordance with the Guide for Animal Experimentation at Nagoya
University School of Medicine.

Tissue preparation

The animals were anesthetized with pentobarbital (40 mg/kg) injected into the abdominal
space and perfused transcardially, first with 100 ml of saline, then with 200 ml of fixative con-
sisting of 4% paraformaldehyde and 0.2% picric acid in 0.1M phosphate buffer (PB) (pH 7.4).
After perfusion, the submandibular gland, sublingual gland, superior cervical ganglion, and sub-
mandibular ganglion were excised and postfixed overnight with the same fixative at 4°C. The tis-
sues were then immersed overnight in 0.1M PB containing 30% sucrose at 4°C and cut into 10-
um sections in a cryostat. The sections were mounted on gelatin-coated slides.

Preparation of polyclonal antibody to FGF-2

In order to affinity-purify anti-FGF-2 IgG, 200 pg of FGF-2 in a partially purified fraction
was separated by SDS-PAGE and transblotted to nitrocellulose membranes. FGF-2 bands were
excised as small pieces and treated with 5% bovine serum albumin (BSA) in phosphate buffered
saline (PBS) overnight at 4°C to block nonspecific binding of antibody. Then the protein A puri-
fied IgG fraction of anti-FGF-2 was added to the excised blots and incubated overnight at 4°C
with end-over-end mixing. After washing with PBS ten times, antibody bound to FGF-2 was
eluted with 0.2M glycine-HCI, pH 3.0, 0.15M NaCl. The purification steps were repeated sev-
eral times using excised blots washed with PBS. The final eluted solution was immediately neu-
tralized, supplemented with BSA to 1 mg/ml and dialyzed with PBS containing 0.02% sodium
azide.’V

Immunohistochemical procedures

Sections were processed for immunohistochemistry with a FGF-2 antiserum that had been
characterized by Western blot analysis elsewhere,1416:19.29,30)

Briefly, the sections were 1) incubated for 48 h with FGF-2 antiserum, diluted 1:1000 with
0.1M PBS containing 5% BSA, 1% normal goat serum (NGS), 0.1% Triton X-100 (TX), and
0.1% sodium azide; 2) washed three times with 0.1M PBS containing 1% NGS, (10 min for
each washing); 3) incubated overnight with biotinylated anti-rabbit goat IgG (VECTOR, Bur-
lingame, U.S.A.) diluted 1:250 with the same solution; 4) washed three times with 0.1M PBS
containing 1% NGS (10 min for each washing); 5) incubated for 24 h with peroxidase-con-
jugated streptavidin (Kirkegaard & Perry Lab, Inc., Gaithersburg, U.S.A.), diluted 1:300 with
0.1IM PBS containing 5% BSA and 0.1% TX; 6) washed twice with 0.1M PBS, once with
0.05M Tris-HCI buffer (TB) (pH 7.4) and finally with 0.IM TB for 10 min each; and 7) sub-
jected to a modified version of the cobalt-glucose oxidase-diaminobenzidine intensification
method.?>3 After immunostaining, the sections were dehydrated in a graded series of ethanol
and coverslipped. Control sections were incubated with the antiserum that had been adsorbed
with bovine FGF-2 and processed as described above.
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RESULTS

Nerve fibers with FGF-2-like immunoreactivity ran between the submandibular and sublin-
gual glands and entered the cranial apexes of the glands. They gave rise to branches into the in-
terlobular spaces running along local arteries or glandular ducts (Fig. 1a, b), No positive reac-
tions occurred in preadsorption control sections (Fig. 1lc, d). In the more peripheral regions of
the glands, FGF-2-positive nerve fibers decreased in number; occasionally, a few immunoreac-
tive nerve fibers were located close to acinar cells of the submandibular gland (Fig. 2a, b).

Fig. 1. Bright-field photomicrographs showing, at low (a) and high (b) magnification, the main trunk of
FGF-2- immunoreactive nerve fibers in an interglandular space (arrowheads). a, X100; b, X400
Bright-field photomicrographs showing, at low (c) and high (d) magnification, a preadsorption
control section. ¢, X100; d, X400. The positive reaction, as seen in Fig. 1a, b, is abolished (arrow-
head).
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Fig. 2. Bright-field photomicrographs showing nerve fibers with FGF-2 immuno-reactivity (ar-
rowheads) in the submandibular gland. Some run from an interlobular space to an ad-
Jacent lobule (a), and others are located close to acini (b). a, X400; b, X400

To deduce the origin of FGF-2-immunoreactive fibers in the salivary glands, the subman-
dibular and superior cervical ganglia were immunostained. The submandibular ganglion, which
was located in the connective tissue between the submandibular and sublingual glands, con-
tained immunoreactive ganglion cells (Fig. 3a). Immunoreaction products were seen mainly in
the cytoplasm, but rarely in the nuclei of the ganglion cells. In preadsorption control sections,
these reactions were eliminated (Fig. 3b). There were no reactions in the superior cervical gan-
glion (Fig. 3c).
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Fig. 3a. Bright-field photomicrograph showing FGF-2 immunoreaction in the submandibular
ganglion. X200
b. Bright-field photomicrograph showing disappearance of immunoreaction in a pread-
sorption control section. X200
c. Bright-field photomicrograph showing the superior cervical ganglion devoid of FGF-2
immunoreaction. X200

Intense FGF-2-positive reactions were noted in the epithelial cells of collecting and interca-
lated ducts; striated duct epithelium and acinar cells exhibited less intense immunoreactions
(Fig. 4a, b, ¢, d, e). Many FGF-2-immunoreactive nerve fiber bundles were localized to the
walls of arteries (Fig. 5a, b) and dissociated into fine branches that formed a network on the sur-
face of the tunica adventitia (Fig. 5c). Such FGF-2-positive reactions were also found in the en-
dothelial cells of relatively large arteries and veins within the salivary glands (Fig. 5d). In pread-

sorption control sections, there were no reactions in the epithelial cells of ducts and blood ves-
sels (Fig. 4f).
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Bright-field photomicrographs showing, at low (a) and high (b) magnification, a FGF-2-immunopositive
collecting duct (double arrowheads). Arrowhead indicates FGF-2-immunoreactive nerve fibers subjacent
to the duct. a, X100; b, X400

Bright-field photomicrographs showing FGF-2-positive reactions in the epithelia of a relatively small inter-
lobular duct (double arrowheads) (c), a striated duct (double arrowheads) (d), and an intercalated duct
(double arrowheads) (e). ¢, X400; d, X400; e, X200

Bright-field photomicrographs showing disappearance of immunoreaction in a preadsorption control sec-
tion.: collecting duct (arrow head), striated duct (double arrowhead) and blood vessels (open arrowhead)
X200
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Fig. 5. Bright-field photomicrographs. FGF-2-immunoreactive nerve fibers (arrowheads) in the wall of an artery
are shown at a) low (X400) and b) high (X1000) power magnification.
c. Bright-field photomicrograph showing a reticular network of FGF-2-immunoreactive nerve fibers in the
wall of an artery (arrowhead). X400
d. Bright-field photomicrograph showing FGF-2-positive reactions in the endothelial cells of an artery
(double arrowheads) and a vein (arrowhead) in the submandibular gland. X400

DISCUSSION

The present study demonstrated localization of FGF-2 in putative autonomic nerves. The
presence of FGF-2-immunopositive ganglion cells in the submandibular ganglion, but not in the
superior cervical ganglion, suggests that some of the immunoreactive nerve fibers in the salivary
glands are of parasympathetic origin. It is likely that immunoreactive nerve fibers in the walls of
arteries are derived from sensory ganglia.”**% A recent (in vitro) experiment showed that
FGF-2 facilitates the survival and development of cholinergic neurons and fibers.*) Furthermore,
parasympathetic denervation was reported to cause hypofunction and degeneration of the sali-
vary glands in rats.?® Our results, together with the above experiments, show that FGF-2 may
participate in the maintenance or trophism of rat salivary glands.

The presence of FGF-2-immunoreactivity in the epithelia of collecting and striated ducts
raises the question of whether the growth factor is secreted into the lumen and/or adluminal
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spaces, because most members of the FGF family including FGF-1 and FGF-2 are devoid of
signal sequence®®. Mignatti et al. say that FGF-2 is released from the cell surface in a novel
exocytic way independent of the classic endoplasmic reticulum-Golgi complex route and
possibly binds to heparan-sulfate proteoglycan in the extracellular matrix.® Although the
FGF-2 antiserum used in the present study may not have recognized FGF-2 molecules bound
with heparan-sulfate in the extracellular matrix, DiMario et al.'? and Gonzalez et al.*") reported
that the antisera they used reacted with them. Thus, we could not determine whether bFGF is
secreted in the salivary glands. Use of antibodies that are directed to heparan-sulfate-bound
FGF-2 may clarify this uncertainty.

The role of high concentration FGF-2 molecules in the intercalated ducts, as revealed by the
present immunohistochemical study, is not clear. However, the characteristic distribution of
FGF-2 immunoreactivity suggests its important role in the physiological process.
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