THE EFFECT OF CIMETIDINE AND HYPOXIA ON THE GASTRIC MACROMOLECULAR GLYCOPROTEIN IN RAT

SABURO NAKAZAWA, M. D., KOSE SEGAWA, M. D., YOSHIISA TSUKAMOTO M. D., MASANORI OKADA, M. D., EIJI KOBAYASHI, M. D., HATSUHIRO YAMAGUCHI, M. D., HIDEMI GOTO, M. D., YASUMITSU KURITA, M. D., and AKIRA FUKUI, M. D.

Second Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466, Japan

ABSTRACT

In an experimental study in rats, cimetidine, a potent gastric-acid inhibitor (50 mg/kg, p.o.) reduced the macromolecular glycoprotein level of glandular stomach. The administration of cimetidine at a dose of 50 mg/kg, which inhibited the gastric lesions induced by hypoxia (13% O₂ for 6 hours), reduced the glandular stomach level of high molecular glycoproteins in animals receiving a low oxygen load as well as in those receiving no load. It was assumed that the reduction of macromolecular glycoprotein accelerated the gastric lesion induced by hypoxia load in rats and that cimetidine inhibited the lesions through a process other than that of recovering the glycoprotein level in the glandular stomach.

Key words: Glycoprotein, Rat, Hypoxia, Gastric mucosal lesion, Cimetidine

INTRODUCTION

Although the mechanism of gastric mucosal protection is an important factor from the standpoint of the etiology and treatment of peptic ulcer1), its properties complicate sample handling and there is no established view of its quantitative determination. Recently, Allen2) proposed a macromolecular glycoprotein, with a molecular weight 2 × 10⁶, as a structure model for mucus, and Azumi3) determined macromolecular glycoproteins by gel filtration. These works devoted to the development of study on the defensive mechanism of gastric mucosa. The earlier report from our laboratory4) demonstrated that the macromolecular glycoproteins are localized in the mucosal layer by using a modification of the original method of Azumi et al. In the present report the authors tried to determine the effect of cimetidine, a Histamine H₂-receptor antagonist which has an inhibitory effect on gastric acid secretion, on macromolecular and also to determine the variation in glycoprotein level during an acute low oxygen load5,6) which induced acute gastric mucosal lesions.

MATERIALS AND METHODS

1. Study Animals

The animals used were male Wistar rats weighing approximately 200 g. For 24 hours before the onset of the study they were offered nothing but water. Each animal was given 1 g of urethan per kg of body weight and all rats were treated under anesthesia.

Received for Publication August 16, 1985
2. **Study Design**

The rats were divided into four groups. Animals from group A, the control group, received 1 ml of physiological saline through gastric intubation and then were kept in normal room air for 7 hours. Animals from group B were given cimetidine at a dose of 50 mg/kg and were similarly kept in normal room air for 7 hours. The remaining two groups were administered a low oxygen load: for group C, 1 ml physiological saline was administered into the stomach and for 6 hours after dose administration the animals were kept in a 60-liter incubator in low oxygen atmosphere consisting of 13% oxygen and 87% nitrogen, as described in a previous report⁵. For group D, cimetidine was administered into the stomach at a dose of 50 mg/kg and the animals were kept in the same manner as those of group C.

After the experimental animal was decapitated and its stomach removed, an incision was made in the greater curvature of the excised stomach and it was examined grossly for mucosal lesions. According to the method of Takagi *et al.*,⁶ our findings were classified as "lesion-free" (−), "one echymosis or more or slight erosive lesion" (+), "moderate erosive lesion" (++) or "remarkable or numberless moderate erosive lesions" (+++). Then the forestomach was removed and only the glandular stomach, including the mucus layer, was subject to the study. Samples were immediately lyophilized and pulverized. As previously reported⁴, 2 ml of a chloroform-methanol (2:1) mixture was added to 100 mg dry weight of the powdered sample and the solution was shaken for 24 hours and centrifuged. The supernatant was discarded to eliminate the effect of the lipid component. According to the method of Azuumi *et al.*,³ extraction was carried out twice with a pH 7.2 solution of 2% Triton x-100 and 50 mM Tris HCl. Using a Bio-Gel A 1.5 m column (diam., 1.1 cm; length, 80 cm), 1.5 ml of the combined extracts was eluted. The content of hexose in each fraction and the total hexose content were determined by the sulfuric acid method, using galactose as the standard⁷.

The data obtained in this study were compared for samples of 100 mg dry weight and assessed by Student's t-test for significant differences (p<0.05).

RESULTS

1. **Gastric Mucosal Lesions Due to Experimental Hypoxemia**

As shown in the Table, animals in group A (n=8) had few or no mucosal lesions, whereas all animals in group C (n=7) had lesions classified as (++) or (+++). Animals from group D (n=8) showed a tendency toward inhibition of the occurrence of mucosal lesions. The gastric mucosal lesions were divided into two groups, (1) (−) or (+) and (2) (++) or (+++), and were assessed by Fisher's exact probability test. There was a statistically significant difference between groups A and C at 1% level and between groups C and D at 5% level.

<table>
<thead>
<tr>
<th>Grade of Lesions</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(−)</td>
</tr>
<tr>
<td>(A) Control (n=8)</td>
<td>7</td>
</tr>
<tr>
<td>(C) Hypoxia (n=7)</td>
<td>0</td>
</tr>
<tr>
<td>(D) Hypoxia with Cimetidine (n=8)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: The inhibitory effect of cimetidine on gastric mucosal lesion induced by hypoxia.
2. Variations in Glycoproteins, Especially in the Macromolecular Fraction

The elution pattern by gel filtration of the sample was obtained from the control group as shown in Figure 1. Each sample separated into three fractions designated as peak-1, peak-2, and peak-3, beginning with the fraction of the greatest molecular weight. Figure 2 shows the total hexose content and peak-1 hexose content, which represents macromolecular glycoproteins, for groups A and B. The total hexose content was $149 \pm 52 \mu g/100 \text{ mg dry weight (mean} \pm \text{SEM)}$ for group A ($n=8$) and $1309 \pm 66 \mu g$ for group B ($n=6$) which tended to show lower hexose content than group A, but the difference was not statistically significant. On the other hand, the peak-1 hexose content was $519 \pm 57 \mu g$ and $330 \pm 34 \mu g$ for groups A and B, respectively, the
Fig. 3 The ratio of peak-1 hexose to total hexose. The ratio of group B shows a statistically significant difference compared with that of group A (p<0.01).

DISCUSSION

The theory that mucus in the digestive tract protects the mucosa against chemical stimuli and enzyme-induced lesions such as gastric acid and pepsin has been supported by a variety of experiments. It has been found that mucus which covers the mucosal surface in jelly form not only withstands mechanical stimuli due to food and other factors but also exerts antipeptic action on proteolytic enzymes such as pepsin and acid⁹ and acts on H⁺ as a buffer⁹. In spite of the important role played by mucus in mucosal protection, its mechanisms of biosynthesis and secretion still remain to be elucidated. Attempts have been made to clarify its mechanisms with slit-lamp¹⁰ and electron microscopic observation¹¹, and with histochemical methods, such as PAS staining¹², Alcain blue staining¹³, and their combination, as well as with paradoxical concanavalin A staining. Various biochemical approaches have also been made to find a solution to the problem. A major glycoprotein complex present in the gastric mucosa has been found to be mucous glycoproteins. Variations in gastric mucosal glycoprotein content have been investigated through determination of hexose, hexosamine, sialic acid, and other related substances,
using the sugar portion of glycoprotein as a parameter. In the present study we determined the
effect of cimetidine on gastric mucosal glycoproteins and the change during a low oxygen load,
using hexose as an index and using a delipidizing technique, by which the level of macromole­
cular components could be determined more accurately, as described in a previous report\(^4\).
In rats with experimentally induced hypoxemia, a 6-hour 13%-oxygen gas load resulted in a
significant decrease of PaO\(_2\) to 57.4 + 3.6 Torr, and under such conditions an ulcer occurred
centering around the corpus. Both the peak-1 hexose level and the ratio of the peak-1 hexose to
total hexose were decreased after 6 hours of oxygen load (O\(_2\) 13%). This finding suggests that
macromolecular glycoproteins are associated with mucosal lesions. It has been reported that the
mucosal blood flow in this model is decreased, especially, in the corpus, as compared to the
pyloric portion\(^14\). Although the mechanism of mucosal lesion development is under study in
relation to the findings of decreased mucosal blood flow, the following assumption may be made.
Briefly, low oxygenation state, which is caused at the cellular level in the mucosa by hypoxia and
a disturbance of circulation, can also occur in mucous cells. As a result, macromolecular glyco­
proteins are decreased, the gastric mucoprotective mechanism breaks down, and an ulcer
ultimately develops.

The present study showed that peak-1 hexose level was significantly decreased after adminis­
tration of cimetidine. This may be explained as follows. Earlier studies\(^15,16\) have shown that
histamine causes the covering cell cyclic AMP level to increase and also exerts a direct action on
the covering cells. The other authors reported that histamine H\(_2\)-receptor agonists promoted
mucous secretion via adenylate cyclase\(^17\). Histamine H\(_2\)-receptor antagonist was assumed to
inhibit the occurrence of gastric mucosal lesions, exerting an intense inhibitory action on gastric
juice secretion\(^18,19\).

Based on these facts, it is conceivable that cimetidine causes a decrease in consumption of
macromolecular glycoproteins, but that through inhibition of biosynthesis it lowers the glyco­
protein level of gastric mucosa. We are therefore inclined to think that if gastric acid, which
plays an especially important role in gastric mucosal lesion development, is controlled, the
magnitude of decrease in macromolecular glycoproteins is reduced as a secondary event.

REFERENCES

2) Allen, A., Structure of gastrointestinal mucus glycoprotein and the viscous and gel-forming properties of
3) Azuami, Y., Ohara, S., Ishihara, K., et al., Correlation of quantitative change of gastric mucosal glyco­
4) Tominaga, J. and Nakazawa, S., Studies on the localization and the measurement of macromolecular
glycoproteins of the glandular stomach in rats. *Jpn. J. Gastroenterol.*, 80, 1575–1580, 1983 (in
Japanese).
5) Nakazawa, S., Segawa, K., Imai, K., et al., A new method for experimental study on gastric mucosal
6) Takagi, K., Kasuya, Y., Watanabe, K., Studies on the drugs for peptic ulcer. A reliable method for pro­
7) Dubois, M., Gilles, K. A., Hamilton, J. K., et al., Colorometric method for determination of sugar and
8) Takagaki, Y.M. and Hotta, K., Characterization of peptic inhibitory activity associated with sulfated
10) Bickel, M., Gordon, L., Kaufman, Jr., Gastric gel mucus thickness: Effect of distension, 16, 16-dimethyl

