Laboratories

Back
Top > Laboratories > Department of Advanced Medical Sciences > Functional Regenerative Medicine

Advanced Medical Science(Cooperating field)Functional Regenerative Medicine

Research Projects

Axonal Regeneration Group

After injury of our central nervous system (CNS), chondroitin sulfate (CS), a glial scar-associated glycan, transforms growth cones into "dystrophic endballs" through its receptor PTPRσ. Dystrophic endballs are terminally degenerated structures of axonal tips first identified and described by Cajal about 100 years ago. It completely lacks any ability for forward migration, thus, it has been believed to be responsible for failure of axonal regeneration of our CNS. However, underlying mechanisms of dystrophic endballs have been unclear.
We had focused on molecular and cellular mechanisms of dystrophic endball and had found that autophagosomes were abnormally accumulated in it.

Faculty Members

FacultyPositionDepartment
Kazuma Sakamoto Assistant Professor Molecular Biology
Shaniya Abudureyimu Instructure researcher Molecular Biology

Bibliography

  • 2019
    1. Sakamoto K, Ozaki,T, Yen-Chun Ko, Cheng-Fang Tsai, Gong Y, Morozumi,M, Ishikawa, Y, Uchimura K, Nadanaka S, Kitagawa H, Medel Manuel L. Zulueta, Anandaraju Bandaru, Tamura J, Shang-Cheng Hung, Kadomatsu K. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nature Chemical Biology, in press
  • 2016
    1. Scilabra SD, Yamamoto K, Pigoni M, Sakamoto K, Muller SA, Papadopoulou A, Lichtenthaler SF, Troeberg L, Nagase H, Kadomatsu K. Dissecting the interaction between tissue inhibitor of metalloproteinases-3 (TIMP-3) and low density lipoprotein receptor-related protein-1 (LRP-1): Development of a \"TRAP\" to increase levels of TIMP-3 in the tissue. Matrix Biol, 2016.
  • 2014
    1. Kadomatsu K, Sakamoto K. Mechanisms of axon regeneration and its inhibition: roles of sulfated glycans. Arch Biochem Biophys, 2014; 558: 36-41.
    2. Kadomatsu K, Bencsik P, Gorbe A, Csonka C, Sakamoto K, Kishida S, Ferdinandy P. Therapeutic potential of midkine in cardiovascular disease. Br J Pharmacol, 2014; 171: 936-944.
    3. Kadomatsu K, Sakamoto K. Sulfated glycans in network rewiring and plasticity after neuronal injuries. Neurosci Res, 2014; 78: 50-54.
  • 2013
    1. Matsui H, Ohgomori T, Natori T, Miyamoto K, Kusunoki S, Sakamoto K, Ishiguro N, Imagama S, Kadomatsu K. Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis. Cell Death Dis, 2013; 4: e946.
    2. Hirano K, Ohgomori T, Kobayashi K, Tanaka F, Matsumoto T, Natori T, Matsuyama Y, Uchimura K, Sakamoto K, Takeuchi H, Hirakawa A, Suzumura A, Sobue G, Ishiguro N, Imagama S, Kadomatsu K. Ablation of keratan sulfate accelerates early phase pathogenesis of ALS. PLoS One, 2013; 8: e66969.
    3. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis, 2013; 4: e525.
    4. Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, Onishi A, Nakamura Y, Kadomatsu K. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res, 2013; 73: 1318-1327.
  • 2012
    1. Sakamoto K, Kadomatsu K. Midkine in the pathology of cancer, neural disease, and inflammation. Pathol Int, 2012; 62: 445-455.
    2. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest, 2012; 122: 80-90.
  • 2011
    1. Imagama S, Sakamoto K, Tauchi R, Shinjo R, Ohgomori T, Ito Z, Zhang H, Nishida Y, Asami N, Takeshita S, Sugiura N, Watanabe H, Yamashita T, Ishiguro N, Matsuyama Y, Kadomatsu K. Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci, 2011; 31: 17091-17102.
    2. Kato N, Kosugi T, Sato W, Ishimoto T, Kojima H, Sato Y, Sakamoto K, Maruyama S, Yuzawa Y, Matsuo S, Kadomatsu K. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction. Am J Pathol, 2011; 178: 572-579.
    3. Sakamoto K, Bu G, Chen S, Takei Y, Hibi K, Kodera Y, McCormick LM, Nakao A, Noda M, Muramatsu T, Kadomatsu K. Premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1. J Biol Chem, 2011; 286: 8405-8413.
  • 2010
    1. Ito Z, Sakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu K. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci, 2010; 30: 5937-5947.
    2. Asano Y, Kishida S, Mu P, Sakamoto K, Murohara T, Kadomatsu K. DRR1 is expressed in the developing nervous system and downregulated during neuroblastoma carcinogenesis. Biochem Biophys Res Commun, 2010; 394: 829-835.
  • 2009
    1. Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W, Miwa Y, Sakamoto K, Matsuo S, Kadomatsu K. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol, 2009; 20: 1565-1576.
    2. Yin J, Sakamoto K, Zhang H, Ito Z, Imagama S, Kishida S, Natori T, Sawada M, Matsuyama Y, Kadomatsu K. Transforming growth factor-beta1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury. Brain Res, 2009; 1263: 10-22.
  • 2007
    1. Chen S, Bu G, Takei Y, Sakamoto K, Ikematsu S, Muramatsu T, Kadomatsu K. Midkine and LDL-receptor-related protein 1 contribute to the anchorage-independent cell growth of cancer cells. J Cell Sci, 2007; 120: 4009-4015.