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METABOLISM OF IRON STORES
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ABSTRACT

Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. 
Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping 
iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron 
deposition have been introduced in relation to the regulators of storage iron metabolism. On the other 
hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden 
in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron 
by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in 
patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intra-
venous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). 
We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order 
(1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously 
proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin 
iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change 
in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from 
hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation 
of storage iron turnover rate which had been reported by previous investigators in estimating storage iron 
turnover rate of normal subjects.

Key Words: �ferritin and hemosiderin, serum ferritin kinetics, storage iron turnover, iron deficiency and 
overload

INTRODUCTION

Iron is an essential element for the living body. The human body stores iron in the form of 
ferritin and hemosiderin in liver, spleen, marrow, duodenum, skeletal muscle and other anatomic 
areas. Hemosiderin has been known as yellow-brownish granules that can be stained by Prussian 
blue in the tissue cells. On the other hand, ferritin is invisible by photomicroscopy or may 
be faintly visible and stained diffusely in the tissue cells by Prussian blue, if concentrated. 
Hemosiderin and ferritin are iron-containing proteins with magnetic susceptibility. Hemosiderin 
is water-insoluble and thermally denatured, but ferritin is water-soluble and heat-resistant up to 
75°C. These characteristic differences were used for the fractionation of ferritin and hemosiderin. 

The total amount of body iron stores is around 600 to1000 mg in the normal adult male and 
around 200 to 300 mg in the normal adult female.1) 
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The amount of ferritin iron is slightly larger than hemosiderin iron in the range from iron 
deficiency to normal.2, 3) However, the amount of hemosiderin iron becomes larger than ferritin 
iron in the iron overload range.2-4) Ratio of hemosiderin iron per ferritin iron increases along 
with the progress of iron deposition.2-4) 

The prevalence of iron deficiency anemia in the menstruating female is less than 10%.5-7) How-
ever, that of iron deficiency without anemia is around 20 to 40% in the menstruating female.7, 8)  
The amount of storage iron in the normal female increases gradually after menopause, but it 
is still lower than the level of the normal male even after 20 years.8) The main cause of iron 
deficiency is increased blood loss.

Storage iron behaves as if resisting change in the iron density gradient4) in accordance with 
an iron homeostasis.9) The transformation of ferritin into hemosiderin10, 11) might be the second 
best evolutionary step to reduce iron toxicity, compensating for the human body’s lack of an 
iron excretion function. 

The increase of non transferrin-bound iron, both in whole body iron overload and in localized 
iron deposition12-14, 17), produces hazardous free radicals causing various disorders. To reduce iron 
toxicity, phlebotomy is performed for treating hereditary hemochromatosis and chronic hepatitis 
C. Also, an iron chelating agent, deferasirox18), is now in use for treating anemic patients with 
transfusional iron overload. 

Ferrokinetics is no longer performed due to the regulation of in vivo application of radioactive 
isotopes and the development of other measures, although it yielded a large amount of important 
information on iron metabolism and erythrokinetics. However, detailed storage iron turnover 
studies have not been conducted. 

Recent advance of molecular biology and genetics revealed many factors regulating iron 
metabolism. Hepcidin, discovered in 2000 by Krause et al.19), was initially recognized as an 
antimicrobial peptide produced in the liver. However, it was also found to be a regulator of iron 
metabolism in 2001 by Nicolas et al.20) 

The characteristic behaviors of ferritin iron and hemosiderin iron in iron deposition and 
mobilization were clarified through serum ferritin kinetics by Saito et al.4, 21) in 2012–13 after 
60 year-long blank period.

The above-mentioned knowledge of the metabolism of iron stores seems essential not only for 
understanding the basis of the iron metabolism, but also for studying the vast field of medicine.

The criteria of author’s terminology are indicated in Table 1.

Table 1	 Classifications of iron status according to storage iron levels
	 The term “Normal iron stores” (abbreviated to Normal in the table) means the level of iron stores 

between iron deficiency and iron overload regardless of disease and iron distribution in the body. 
	 The border between the state of iron decrease within normal iron stores and iron deficiency is clear 

cut. However, that of iron increase within normal iron stores and iron overload is not so clear; a 
transitional zone between normal iron increase and iron overload was assigned. 

Iron deficiency ±symptom <decrease Normal increase< Iron overload ±symptom

Iron stores	 g <0.1 2.5~5.0<

Serum ferritin	 ng/ml <12 250~500<

TIBC*	 μg/dl >360 ~200>

*Total iron-binding capacity of serum.
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CLINICAL METHOD FOR DETERMINING IRON STORES

Quantitative determination of iron stores
The total amount of iron in the blood removed by phlebotomy15, 22-25) or that in the transfused 

blood for patients with transfusion-dependent anemia can be determined by using the ratio of 
hemoglobin iron to hemoglobin. The total amount of iron stored after intravenous iron injec-
tion of patients with iron deficiency anemia can be obtained by subtracting the iron fixed in 
the increased hemoglobin in red cell mass26) from the total amount of iron injected. The total 
amount of iron stores divided by the term of non-iron deficiency state after iv iron infusion 
until the recurrence of iron deficiency gives the storage iron decrease rate26, 27) in patients with 
iron deficiency anemia with constant blood loss. 

Semiquantitative estimation of iron stores
The correlation between the total amount of storage iron and hemosiderin grain counts from 

biopsy sample has been used for the estimation of iron stores. Total iron binding capacity and 
transferrin receptor are helpful for the diagnosis of iron deficiency states. 

Body surface monitoring methods such as dual-energy X-ray CT, superconduction quantum 
interference device susceptometry (SQUID), and magnetic resonance imaging (MRI)28) were 
introduced. However, other than for MRI, these methods are not adopted for clinical settings. 
Although MRI is useful for the estimation of localized iron deposition, it has limitations regarding 
the quantitative determination of total amounts of storage iron in iron overload29), and is especially 
unreliable in mild iron overload range such as serum ferritin below 1500 ng/ml.

Radioimmunoassay of serum ferritin developed by Addison et al. in 197530) was a breakthrough 
for studies on the iron metabolism. For example, the differential diagnosis of hypochromic 
hypoferremic anemia from iron deficiency anemia became possible by assaying serum ferritin.30-33) 

Serum ferritin may render a value higher than the actual storage iron level in patients 
with various inflammations, malignancies, or hereditary hyperferritinemia-cataract syndrome.34) 
Therefore, appropriate examinations are needed for excluding suspected cases of overestimation. 
Despite its disadvantages, serum ferritin has been regarded highly for the diagnosis and treatment 
of patients with iron deficiency anemia and iron overload.4-8, 15, 23-27, 30-33)

Since Addison et al.30) revealed that serum ferritin concentration reflects the iron stores of 
the body, a rate33) and a formula6) were proposed for converting serum ferritin into iron stores. 
However, such conversion methods do not always reflect the amount of iron stores because 
serum ferritin cannot reflect hemosiderin iron. Furthermore, serum ferritin and the amount of 
storage iron are not correlated linearly as shown in Fig. 1a and Fig. 1b. The ratio of serum 
ferritin to iron stores was lower in the level below 1 g than that above 1 g. This may indicate 
the iron insufficiency for ferritin synthesis in patients with decreased but within the normal level 
of storage iron (Fig. 1a) (Table 1).

Determination of ferritin iron and hemosiderin iron by serum ferritin kinetics
Saito et al.4) developed a clinical method for the simultaneous determination of ferritin and 

hemosiderin iron by using a serum ferritin decrease curve measured in the course of iron removal 
therapy.4) The method is based on the fact that the serum ferritin decrease curve is composed of 
the sum of two components, one decreasing and the other recovering. The decreasing component 
reflects the decrease of pre-existing tissue ferritin iron, and the recovering component reflects 
the increase of tissue ferritin iron by removing iron from hemosiderin.4) The best fit decrease 
curve of serial serum ferritin assay dots was selected by computer simulation with a spreadsheet 
program. By the above-described processing, the amount of ferritin iron and hemosiderin iron 
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among total iron stores was determined.4) In addition, a method of proportional allotment was 
applied21) for displaying the increasing and decreasing phases of ferritin iron and hemosiderin 
iron, and also for determining the change in proportion between pre-existing old ferritin and 
new ferritin synthesized by removing iron from hemosiderin in the course of iron removal. The 
proportion of old and new ferritin iron in the mixture of both were calculated by the formula: 
percent new ferritin iron = 100 × new ferritin iron/total (new + old) ferritin iron. 

Iron balance was determined by the serum ferritin value returned to the previous level.4) 

INCREASE OF IRON STORES

Iron overload
Long-term positive iron-balance (absorption > loss) leads to iron overload (Table 1).
Iron contained in decreased hemoglobin in anemia, except for iron deficiency anemia, is added 

to storage. However, if storage iron is less than 1 g before the development of anemia, the total 
amount of storage iron after its development will stay within the normal range.

The incidence of iron overload is higher in males than in females with menstrual blood loss. 
Generally, iron overload symptoms appear in patients with serum ferritin levels above 1000 ng/ml.

The main causes of iron overload are blood transfusion, alcohol consumption, mistreatment and 
uncontrolled increase of iron absorption in patients with hereditary hemochromatosis.35-37) However, 
iron absorption is not always increased in iron overloaded hereditary hemochromatosis. Sargent 
et al.37) demonstrated an increase of iron absorption in patients with hereditary hemochromatosis 
whose storage iron level was kept within the normal range after phlebotomy therapy. 

Uncontrolled increase of iron absorption due to gene mutation results in iron overload in 

Fig. 1	 Correlation between serum ferritin and the amount of storage iron. 
	� Fig. 1a: The ratio of serum ferritin to iron stores was lower below 1 g than above 1 g as observed in 9  

cases with chronic hepatitis (round dot) and 1 case with treated iron deficiency anemia (square dot). 4) 
	� Fig. 1b: The serum ferritin increase rate declined gradually along with the progress of iron addition 

by transfusion in a case with transfusion-dependent anemia before the treatment by deferasirox. The 
combination of Fig. 1a with Fig. 1b will be a top-heavy sigmoid correlation curve covering storage iron 
levels from low normal to iron overload.

Fig. 1a Fig. 1b 
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patients with the C282Y mutated hemochromatosis (HFE1)35, 36), hemojuvelin (HJV) mutated 
hemochromatosis (HFE2)38), hepcidin antimicrobial peptide (HAMP) mutated juvenile hemo-
chromatosis39), transferrin receptor 2 (TfR2) mutated hemochromatosis (HFE3)40-42), solute carrier 
family 40 member 1 (SLC40A1) mutated ferroportin disease (HFE4)43-45), thalassemia major46), 
aceruloplasminemia16), congenital atransferrinemia47, 48) and solute carrier family 11 member 2 
(SLC11A2) mutated divalent metal transporter 1 (DMT1)-associated hypochromic anemia.49, 50) 
DMT1 is a duodenal apical iron transporter regulated by body iron stores.51) It is known as 
natural resistance-associated macrophage protein 2 (NRAMP 2). 

Iron removal therapy is effective not only for hereditary hemochromatosis22-25), transfusional 
iron overload and chronic hepatitis C15), but also for nonalcoholic steatohepatitis and type 2 
diabetes.52)

Iron stores in erythrocyte precursors
Transferrin-bound iron (TfBI) binds transferrin receptor 1 (TfR1) on the surface of erythro-

cyte precursors. Then, the TfBI-TfR1 complex is internalized, iron is released and utilized for 
hemoglobin synthesis or stored. TfR1 expression and intracellular iron concentration are inversely 
correlated.

Bessis et al.53) observed erythroblasts surrounded by ferritin by electronmicroscopy. They 
speculated that such ferritin was supplied from “nursing cells” (marrow macrophages) to 
erythroblasts for hemoglobin synthesis. However, it seemed difficult to confirm the direction 
of ferritin movement from marrow macrophages to erythroblasts morphologically. Iron stores 
in red cell precursors are not an index of the body storage iron level, but are affected by the 
serum iron level. Bessis et al.53) and Zail et al.54) reported that ferritin had disappeared from the 
mature erythrocytes. Later, Cazzola et al.55) detected ferritin in erythrocytes by radioimmunoassay. 
However, erythrocyte ferritin is not worth assaying clinically.

Sideroblasts appear in iron overload or in anemia along with disorders of hemoglobin synthesis, 
with excessive accumulation of iron in mitochondria. Refractory anemia with ring sideroblasts 
is characteristic of bone marrow erythrodysplasia and ring sideroblasts.

Iron stores and iron absorption
Food iron is absorbed through the intestine mostly via duodenum mediated by DMT149, 50). Iron 

absorption is 1 mg/day in normal males and 1.2 mg/day in normal females.56, 57) Iron overload 
is mostly caused by the increase of iron absorption.

In 1948, Granick58) proposed the mucosal block theory, which implied an automatic control 
of iron absorption by the saturation of ferritin formation in the mucosal epithelial cells fol-
lowing oral iron administration. Saito59) revealed that hemosiderin formation was not saturated, 
although ferritin formation was saturated in rats after oral iron administration. He then thought 
that incomplete blockage of iron absorption could occur by way of hemosiderin formation in 
the enterocytes.

Iron can enter the duodenal epithelial cells from both blood circulation and intestine. The total 
body storage iron level is reflected in the storage iron level in enterocytes.56, 57, 60) Iron entering 
the enterocytes via intestine becomes intracellular labile iron61) temporarily and is synthesized 
into ferritin and hemosiderin in the enterocytes. Thus stored iron in the enterocytes becomes 
intracellular labile iron temporarily, and enters blood circulation (absorbed) sooner or later in 
negative iron balance, or it is lost by exfoliation.56, 57, 62) 

Iron absorption is inversely correlated to the amount of iron stores. However, iron absorption 
normalizes before the storage iron level normalizes, along with the recovery of hemoglobin in 
the course of treatment of iron deficiency anemia.63) 
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Shiono et al.64) revealed that the larger the iron stores before iron removal, the faster the 
rebound by acceleration of iron absorption after phlebotomy therapy for patients with chronic 
hepatitis C.15) Such a trend of rebound36, 37) is also observed in hereditary hemochromatosis after 
phlebotomy therapy.

The increase of hemosiderin per ferritin ratio in hereditary hemochromatosis is not as marked 
as that of chronic hepatitis C.21) The relative increase of hemosiderin iron in hepatocytes of 
chronic hepatitis C with a normal level of iron stores4, 21) suggests the difficulty of storing iron 
in the form of ferritin in the hepatocytes suffering from chronic hepatitis C. 

A mild anemia observed in iron-overloaded patients with hereditary hemochromatosis disap-
pears after phlebotomy therapy. Similarly, anemia in transfusion-dependent patients is improved 
after iron removal by deferasirox. 

Nicolas et al.20) revealed the relationship between hepcidin deficiency and iron overload. 
Nemeth et al.65) and Ganz et al.66) clarified that iron release from enterocytes and macrophages 
was regulated by hepcidin-ferroportin axis. Although Hadley et al.67) reported that they observed 
no correlation between serum prohepcidin concentration and iron absorption in normal female 
subjects, Fraser et al.68) doubted the reliability of the prohepcidin assay kit they used. Trombini 
et al.69) suggested that hepcidin production was regulated by the combination of the marrow’s 
iron requirements and iron supply from transferrin. Hepcidin production is also regulated by the 
storage iron level70) that is controlled by erythropoietic activity. Increase of erythropoietic activity 
suppresses hepcidin production70) and the decrease of hepcidin and storage iron promotes iron 
absorption. 

Thus, iron absorption, erythropoietic activity, hepcidin and storage iron interact as the main 
regulators of iron homeostasis.

On the other hand, the mechanism of uncontrolled increase of iron absorption in patients 
with gene mutations71) cannot be explained simply by the action of hepcidin. Low hepcidin 
in hereditary hemochromatosis indicates the derangement of the sensing system to the storage 
iron level due to hemochromatosis (HFE) gene mutations. The mechanisms of uncontrolled iron 
absorption in gene mutated patients are investigated extensively in relation with iron sensing 
proteins of HJV38, 39, 72, 73), transferrin receptor 240-42), HFE74), iron regulatory protein (IRP)75) and 
others, but much remains to be elucidated. Beutler76) pointed out an important issue regarding 
factors those causing the dissociation between clinical manifestations and gene mutations. 

Fig. 2	 Interactions among the major factors regulating iron homeostasis. These factors; iron absorption, eryth-
ropoiesis, storage iron and hepcidin, are regulated by erythropoietin, transferrin saturation, interleukins, 
divalent metal transporter 1, iron regulatory proteins, iron responsive element, hemojuvelin, hypoxia-
inducible factor110), growth differentiation factor 1591) and others.
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Iron entering the body via parenteral routes
Iron entering the body through parenteral routes follows different courses from the iron 

absorbed via the enteric route. 
The transfused senescent red cell or intravenously injected colloidal iron is captured by the 

reticuloendothelial (RE) phagocytes. There, red cell or colloidal iron is decomposed and stored 
temporarily. Then, the stored iron in RE is released and redistributed by transferrin to whole 
body tissues in proportion to the ratio of distribution of pre-existing iron.1) 

Most of the iron enters the body via respiratory tract deposits in pulmonary tissue.17, 77)

Generally, hemosiderin iron per ferritin ratio increases along with the increase of iron deposi-
tion.1, 4) However, after the restoration of the normal level of hemoglobin and iron stores by 
intravenous colloidal iron therapy to iron deficiency anemia, an increase of hemosiderin iron was 
higher than ferritin iron4, 21) due to the increased iron concentration in RE phagocytes. 

Brain iron deposition 
Brain iron deposition contributes to the tissue damage of neurodegenerative diseases such 

as aceruloplasminaemia16) with iron overload due to ceruloplasmin gene mutation, Parkinsonian 
syndromes78), Hallervorden-Spatz syndrome {Pantotenate kinase-associated neurodegeneration 
(PKAN) due to pantothenate kinase 2 (PANK2) gene mutation79)}, neuroferritinopathy80) due to 
ferritin light polypeptide gene mutation, Alzheimer’s disease and amyotrophic lateral sclerosis 
with gene mutations. 

DECREASE OF IRON STORES

Iron deficiency
Long-term negative iron-balance (absorption<loss) results in iron deficiency. Iron deficiency 

implies the state of storage iron exhaustion (Table 1). It can be classified into 3 stages: iron 
deficiency without anemia, iron deficiency anemia without tissue damage, and iron defi-
ciency anemia with tissue damage.1, 63) Iron deficiency tissue damage, so-called Paterson-Kelly 
or Plummer-Vinson syndrome, occurs mostly in middle-aged female patients with chronic iron 
deficiency anemia. Iron deficiency in the developing brain in the early stage of life seems to 
be a risk factor.81)

Iron deficiency limits hemoglobin synthesis82) and this knowledge is applied for the treat-
ment of polycythemia vera. Hayashi15) revealed that iron deficiency sedated chronic hepatitis C. 
Furthermore, Kato et al.83) observed that iron deficiency inhibited the incidence of hepatoma 
in chronic hepatitis C, and Saito84) found the inhibition of hyperthyroidism by iron deficiency. 

Finberg et al.85) discovered iron refractory iron deficiency anemia with high hepcidin levels 
and suppressed iron absorption resulted from a defect in the TMPRSS6 gene. Moreover, the 
utilization of intravenously infused iron in iron refractory iron deficiency anemia is inferior to 
that of ordinary iron deficiency anemia.85)

Helicobacter pylori can survive in strong acidic circumstance by producing alkaline substance 
and receiving nutrient iron from lactoferrin. Hershko et al.86) suggested that helicobacter pylori 
infection triggered autoimmuune gastritis resulting in iron deficiency. Helicobacter pylori infection 
seems to be related to iron deficiency by decreasing iron absorption and by increasing iron loss. 

Storage iron and hypoferremia
Hypoferremia is seen not only in iron deficiency anemia, but also in non-iron deficiency states 

with the normal level of iron stores and iron overload. 
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The human body reserves iron probably because the supply of a sufficient amount of iron 
is difficult by iron absorption alone when there is an urgent need for erythropoiesis as in the 
case of a large amount of blood loss. It is also difficult to mobilize storage iron fast enough to 
meet the acute need for iron, as in the case with erythropoiesis elevated up to 6 to 8 times the 
normal87) even when having a sufficient amount of iron reserve. The shortage of iron supply from 
storage at the time of an acute increase of erythropoiesis results in hypoferremia, by which the 
erythropoiesis is suppressed. Suppressed erythropoiesis by hypoferremia was called “iron-restricted 
erythropoiesis” by Hillman.88) 

Hypoferremia occurs immediately after the supplementation of an essential element, such as vi-
tamin B12, folate, erythropoietin, etc. in patients with element-deficiency anemia, even if patients 
have a sufficient amount of storage iron for recovering their previous normal hemoglobin level. 

Heilmeyer et al.47) first reported a 7 year-old-girl with congenital atransferrinemia with hypofer-
remia, microcytic hypochromic anemia and iron overload. Later, this condition was recognized 
to be associated with transferrin (TF) gene mutations.48)

Hypoferremia occurs in inflammation anemia, a representative of anemia of chronic disease 
with iron-restricted erythropoiesis.88) Chronic kidney disease is also regarded as an anemia of 
chronic disease affected by interleukin-6. Hypoferremia in inflammation anemia is caused by 
the suppression of iron efflux from iron storing cells into plasma due to the down regulation of 
ferroportin by hepcidin inducing internalization and degradation of hepcidin-ferroportin complex.89) 
Dallalio et al.90) suggested the existence of erythropoiesis suppressing factors other than hepcidin 
in anemia of chronic disease. Theurl et al.91) reported that the hepcidin expression in anemia of 
chronic disease was regulated by growth differentiation factor 15. These studies disclosed the 
multilayered regulation of iron metabolism in anemia of chronic disease.

Hypoferremia due to inflammation can be differentiated from iron deficiency anemia by assay-
ing serum ferritin, total iron-binding capacity, C-reactive protein and other indices, as well as by 
clinical manifestations. Detection of iron deficiency anemia co-existing with inflammation anemia 
is possible if serum ferritin is decreased below12 ng/ml.63) Iron administration to inflammation 
anemia is a contraindication; even if iron supply elevates serum iron and reticulocyte counts only 
temporarily, it is fraught with danger and may result in iatrogenic iron overload. 

Iron loss
The amount of iron loss is around 1 mg/day, around 3% of the total plasma iron turnover 

rate in a normal male, and 1.2 mg/day in a normal female56, 57) It is balanced with the amount 
of iron absorption in normal subjects. Most iron deficiencies are caused by increased blood loss. 
Iron is lost daily by intestinal hemorrhage and exfoliation of enterocytes in normal subjects.56, 57, 60)  
Iron loss in sweat is not a significant amount, but it may be overestimated by external iron 
contamination. Storage iron level in the enterocytes is proportional to the total storage iron 
level in iron equilibrium. Therefore, the amount of iron loss by the exfoliation of enterocytes 
is increased in iron overload, and that is decreased negligibly in iron deficiency state. Iron is 
also lost by menstruation, ulcer, trauma, hemodialysis, operation and intravascular hemolysis. In 
intravascular hemolysis, haptoglobin-bound hemoglobin and hemopexin-bound heme are rapidly 
cleared from circulation, stored and reutilized, or lost by hemoglobinuria and hemosiderinuria. 

TURNOVER OF IRON STORES

Intracellular iron turnover 
Iron is not only needed for ferritin synthesis, but also iron accelerates its synthesis92), which 
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results from selective translational activation by iron responsive element93) (IRE), and iron removal 
from ferritin protein shell results in the degradation of ferritin.94, 95) Iolascon et al.49) and Beaumont 
et al.50) state that DMT1 is a key mediator of iron absorption and iron transfer from endosomes 
into the cytosol following the uptake of the transferrin receptor complex. Above-mentioned 
intracellular iron turnover is under the coordinate regulation of IRPs75) and IREs.96-98)

IREs are thought to be associated with iron regulated amyloid precursor protein transcript in 
Alzheimer’s disease.99)

High serum ferritin without the increase of body storage iron level and early onset of bilateral 
cataract in patients with hereditary hyperferritinemia-cataract syndrome34, 95, 100, 101) are caused by 
mutations in the IRE segment of the ferritin light chain (FTL) gene. The slower degradation 
of light (L)-chain ferritin than heavy (H)-chain ferritin95, 100, 101) accelerates the accumulation of 
ferritin in lens. 

Storage iron turnover at red cell sequestration
Storage iron turnover in RE cells was not elucidated until the time Fillet et al.102) determined 

radioiron release from RE cells after the injection of radioiron labeled nonviable red cells to 
normal dogs. Radioiron released from RE cells in the early phase with a 34 minute half time 
originated from labile iron in RE cells, but that in the late phase with 7 day half life originated 
from iron stores in RE cells. In this study, it took 3 to 4 weeks for virtually all radioiron to 
be released from RE cells and utilized, while it took 2 weeks for the red cell utilization of 
transferrin-bound radioiron. The utilization speed of radioiron was delayed by the digestion 
process of non-viable red cells in RE cells. Iron stores and hemoglobin iron in the erythroblasts 
destroyed in ineffective erythropoiesis seem to follow the same process as red cells. Total red 
cell iron divided by mean red cell life span gives red cell iron renewal rate, which indicates net 
amount of red cell iron turnover rate.

Body iron turnover
Body iron turns over from plasma to plasma via bone marrow and spleen mostly in accordance 

with the erythron iron recycling. On the other hand, a small circuit exists between plasma and 
iron compounds in parenchymal tissues.

Finch103) determined total body iron loss by following up red cell radioactivity for 4.5 years. 
He revealed that it took 3 red cell life spans to mix radioiron with pre-existing body iron 
completely and that the body’s iron turnover rate was 0.61 mg/day in a normal male. Saito et 
al.56) determined body iron loss rate average 0.89 mg/day of 2 normal subjects by whole body 
counting for 300 days, and revealed that iron was lost mostly by bleeding and epithelial exfolia-
tion into the intestinal tract. Storage iron loss by the exfoliation of enterocytes was around 0.1 
mg/day, and that loss from the urinal tract was around 1/10 of the loss in feces in an average 
two normal subjects.56)

Saito60) observed that radioiron incorporated into ferritin and hemosiderin in liver and spleen 
with a peak uptake at 24 hours and then majority of it was released to plasma by 48 hours 
after intraperitoneal radioiron injection to normal rats. Such an iron turnover seemed to take 
place in humans. However, the uptake and release of radioiron by liver and spleen could not be 
displayed by ferrokinetic body surface monitoring56, 105-107), being veiled by a high background of 
radioactivity in plasma and bone marrow within 2 days after radioiron injection. 

After the pioneering study by Shoden et al.2, 3), it took 60 years until the clarification of 
ferritin and hemosiderin iron turnover4, 21) as follows. 



244

Hiroshi Saito

Iron pathways of ferritin and hemosiderin 
Iron deposition: Shoden et al.2) fractionated ferritin and hemosiderin iron in the liver and 

spleen biochemically and proposed 5 iron pathways in iron deposition: an iron pathway #1 
from plasma to ferritin, a direct iron pathway #2 from plasma to hemosiderin bypassing ferritin 
synthesis, an iron pathway #3 from plasma to hemosiderin glancing off ferritin, #4 from fer-
ritin to hemosiderin, and #5 from hemosiderin to ferritin.2) However, the only one pathway in 
combination with #1 and 4 was confirmed by Saito.4) The other 3 pathways (#2, 3 and 5) are 
inconceivable and contradictory considering the direction of iron flow and saturation of ferritin 
formation in iron deposition.4)

Thus, one intracellular iron pathway exists in iron deposition where iron flows follow the 
numbered order → (1) labile pool → (2) ferritin → (3) hemosiderin4)

Iron mobilization: Shoden et al.2) advanced an uncertain proposition regarding iron pathways: 
an as yet unproven iron pathway from hemosiderin to ferritin or ferritin to hemosiderin, and 
a direct iron pathway from plasma to ferritin or hemosiderin to plasma. The only pathway as 
a set of pathways from ferritin to plasma and from hemosiderin to ferritin was confirmed by 
Saito et al.4) Two pathways from ferritin to hemosiderin and a direct pathway from hemosiderin 
to plasma are inconceivable and contradictory considering the direction of iron flow and active 
ferritin synthesis in iron mobilization.4) 

Thus, one intracellular iron pathway exists in iron mobilization where iron flows follow the 
numbered order ← (1) labile pool ← (2) ferritin ← (3) hemosiderin4) in iron mobilization (Fig. 
3).

The above-mentioned 2 pathways in iron deposition and mobilization indicate the iron flow 
through the same simple route according to the iron density gradient. 

Serum ferritin kinetics revealed that the iron turnover of ferritin is active, but that of hemo-
siderin is passive mediated by ferritin.4, 21)

Phases of ferritin and hemosiderin iron turnover
Iron deposition: The increase of ferritin iron is larger than that of hemosiderin iron initially, 

but it is smaller later in the course of the linear increase of total iron stores in iron addition. 

Fig. 3	 Iron pathways of ferritin and hemosiderin in iron deposition and mobilization.4)

	 The numbers in quotation indicate the order of tracing in the same lap route.
	 Abbreviation: C.M., cell membrane.
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In contrast, the increase of hemosiderin iron is smaller than that of ferritin iron initially, but it 
is larger later.21) 

The reduction of the increasing rate of ferritin iron and the linear increase of hemosiderin iron 
along with the increase of storage iron2-4) is caused by the transformation of ferritin iron into 
hemosiderin iron in iron deposition.10, 11) This implies the limitation of iron storing capacity in 
the form of ferritin.4) The linear increase of hemosiderin4, 21) in higher storage iron level implies 
the limitlessness of iron storing capacity in the form of hemosiderin4, 21) The limitless iron storing 
capacity of hemosiderin is caused not only by the transformation of ferritin into hemosiderin, but 
also by the expansion of tissue cell space as seen by hepatomegaly in patients with hereditary 
hemochromatosis along with the increase of iron deposition.

Iron mobilization: The decrease of ferritin iron is larger than the decrease of hemosiderin 
iron initially, but it is smaller later in the course of the linear decrease of total iron stores in 
iron removal.21) In contrast, the decrease of hemosiderin iron is smaller than that of ferritin iron 
initially, but it becomes larger later in the course of the linear decrease of total iron stores in 
iron removal.21) 

The increasing (Fig. 4b) and decreasing (Fig. 5a and 5b) curves of ferritin and hemosiderin 
iron do not show a mirror image, but rather an image reversed upside down in the opposite 
side; convex ferritin and concave hemosiderin iron increasing curves versus concave ferritin and 
convex hemosiderin iron decreasing curves.

The percentage of ferritin iron decreased and that of hemosiderin iron increased in the course 
of iron removal is shown in Fig. 6a. The percentage of old ferritin decreased and new ferritin 
iron increased in the course of iron removal is shown in Fig. 6b. The proportion of old and 
new ferritin iron in the mixture of both was reflected to the proportion of old and new ferritin 
iron remaining in iron removal as shown in Fig. 6c.

Fig. 4	 Fig. 4a: Increasing phases of serum ferritin in patient with transfusion-dependent anemia.21) Declination 
of serum ferritin increase in iron addition reflects the transformation of ferritin into hemosiderin.

	 Fig. 4b: Increasing phases of ferritin iron (solid curve) and hemosiderin iron (dotted curve) along with 
the linear increase of total iron stores in transfusion-dependent anemia.21) 

	 The crossing point of increasing curves of ferritin iron and hemosiderin iron appears at a certain storage 
iron level in iron addition, when the amount of initial hemosiderin iron exceeds that of initial ferritin 
iron. The shifting of the crossing point toward a higher storage iron level in iron addition implies the 
increase of iron storing capacity of ferritin. Fig. 4b was made from the data of Fig. 4a.

Fig. 4a Fig. 4b 
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Storage iron turnover rate
The plasma iron turnover rate (PIT) multiplied by the iron distribution ratio of an iron 

component gives the iron turnover rate. Intravenously injected radioiron is initially distributed 
in proportion to pre-existing body iron.1) Therefore, the initial iron turnover rate of an iron 
component is proportional to the ratio of the pre-existing body iron distribution. 

Two weeks after the radioiron injection in a normal subject, red cell radioiron utilization 
(RCU) reaches the levels from 80% to 100%.1, 56, 106-109) When RCU was determined elaborately by 
Hosain et al.108), it ranged from 78% to 84% in 6 normal men. Consequently, the same authors 
thought that higher RCU determined by previous authors might have been overestimated. Any 
of these results, RCU exceeds 2/3 ratio1, 109) of net red cell non-radioactive iron utilization due 
to the cumulative one-way red cell fixation of plasma radioiron reflux from parenchymal tissue 
iron components for two weeks. So, the red cell iron turnover rate104) (RCIT) obtained from 
(PIT × RCU/100)104) becomes larger than the net red cell iron turnover rate. Thus, it does not 
seem appropriate to call the value (PIT × RCU/100) “red cell iron turnover rate (RCIT).”104) 
However, the name “red cell iron turnover rate (RCIT)” is already used generally. Accordingly, 
the name RCIT is used here as it is. For this reason, the red cell iron renewal rate (RCIR), 
obtained from red cell iron divided by mean red cell life span, was adopted as the index of the 
net red cell iron turnover rate. Then, the ratio (RCIR/PIT) indicates net red cell non-radioactive 
iron utilization in contrast to RCU with excess. RCIR corresponds to around 2/3 of PIT, and the 
rest of RCIR in PIT, (PIT – RCIR) indicates the parenchymal tissue iron turnover rate, which 
corresponds to around 1/3 of PIT in normal male (Fig. 7). The same ratio of the total radioiron 
reflux was determined by Cook et al.109) in normal subjects.

The ratio of storage iron to total parenchymal tissue iron in normal male seems to be reflected 
in the iron turnover rate. Although the ratio may vary according to the levels of iron stores, 
even within the normal range, a common ratio 0.7 is used for approximation in estimating the 
storage iron turnover rate from the parenchymal tissue iron turnover rate in normal male due to 

Fig. 5	 Decreasing phases of ferritin iron (solid curve) and hemosiderin iron (dotted curve) along with the linear 
decrease of total iron stores. 

	 Fig. 5a shows a case of hereditary hemochromatosis.
	 Fig. 5b shows a case of treated iron deficiency anemia with constant blood loss.21) 
	 The crossing point of decreasing curves of ferritin iron and hemosiderin iron does not appear in cases 

with the initial hemosiderin iron larger than the initial ferritin iron.

Fig. 5a Fig. 5b 
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Fig. 6	 Fig. 6a, 6b and 6c are made from the data of the same patient with hereditary hemochromatosis.
	 Fig. 6a: Proportion of pre-existing ferritin iron and hemosiderin iron to total iron stores in the course 

of iron removal. 
	 Fig. 6b: Proportion of pre-existing (old) ferritin iron and new ferritin iron synthesized by taking iron from 

hemosiderin in the course of iron removal. Since, iron stores are composed of the sum of ferritin iron 
and hemosiderin iron, the only iron source available for the ferritin synthesis (recovery) is hemosiderin 
iron in iron removal under dietary iron-restriction.

	 Fig. 6c: Proportion of old and new ferritin iron remaining in the course of iron removal. 
	 The area enclosed by points A, B, D and C indicates the total amount of ferritin iron, which is composed 

of old ferritin iron (square area ACDE) and new ferritin iron (quasi-triangular red area ABE). The area 
ABC is shifted to the equivalent area ACD to show the decreasing phase of total ferritin iron. Diagonal 
line CD indicates the amount of ferritin iron removed. Proportions of old and new ferritin iron in the 
area ACD are zoned green and red, respectively. The proportions of new ferritin iron (areas ABE) and 
old ferritin iron (area ACDE) are reflected by those in color zones, although old and new ferritin iron 
cannot be separated due to mixing.

Fig. 6c

Fig. 6a Fig. 6b 
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the difficulty of measuring an individual ratio. 
Parenchymal tissue iron turnover rate is composed of two components; one is the tissue-fixed 

radioiron and the other is the refluxed and red cell-fixed radioiron beyond the net red cell iron 
turnover rate. The term “tissue-fixed radioiron” means the radioiron remaining in tissue after 
releasing a labile fraction of tissue radioiron once taken up. Storage iron turnover rate (SIT) is 
also composed of two components; the storage-fixed radioiron (SITf) and the refluxed and red 
cell-fixed radioiron (SITr). 

To explain the above-described contents, an example of storage iron turnover rate estimated 
in the model of a typical normal male is shown in Table 2 and Fig. 7 (Table 3 in part). 

Bothwell et al.1) proposed about a 9 mg/day parenchymal tissue iron exchange in normal 
male. Although they did not refer to the method, they proposed 5 to 7 mg/day storage iron 
exchange (i. e. turnover). The storage iron turnover rate estimated from their parenchymal tissue 
iron exchange by the present method was 6.3 mg/day (23% of PIT). This datum was similar to 
the value estimated in the model of a typical normal male as shown in Table 2 and Table 3.

On the other hand, Huff et al.104) supposed a 2.7 mg/day (10% of PIT) storage iron turnover 
rate in normal male. However, the storage iron turnover rate estimated here from the parenchymal 
tissue iron turnover rate was 4.9 mg/day (18% of PIT). Pollycove et al.107) reported that storage 

Fig. 7	 Iron turnover rates in the model of a typical normal male. 
	 The subject is under the conditions; red cell iron: 2400 mg (15 g/dl hemoglobin, and 4800 ml blood 

volume), total body iron: 3600 mg, red cell radioiron utilization (RCU): 80% and PIT: 30 mg/day (cf. 
Table 2 and Table 3).

	 Abbreviations / Color / Arc angles (° = degree): PIT, plasma iron turnover rate / pink / 360°; Red cell 
iron turnover rate (not abbreviated) / blue / 288°; Red cell iron renewal rate (not abbreviated) / green / 
240°; Parenchymal tissue iron turnover rate (not abbreviated) / purple / 120°; Tissue-fixed, parenchymal 
tissue iron turnover rate due to tissue-fixed radioiron / purple / 72°; Reflux, parenchymal tissue iron 
turnover rate due to refluxed and red cell-fixed radioiron / purple / 48°; SIT, storage iron turnover rate 
/ red / 84°; SITf, storage iron turnover rate due to storage-fixed radioiron / red / 50.4°; SITr, storage 
iron turnover rate due to refluxed and red cell-fixed radioiron / red / 33.6°. 
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iron turnover was negligible in normal subjects assuming that the reflux mostly originated from 
erythroblasts. However, the storage iron turnover rate estimated here from parenchymal tissue 
iron turnover rate was 9.8 mg/day (28% of PIT) (Table 3). 

Thus, storage iron turnover rate can be estimated appropriately by using net red cell non-
radioactive iron turnover rate (RCIR). However, it will be underestimated by using red cell iron 
turnover rate (RCIT) with surplus. 
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Table 2	 Storage iron turnover rate (SIT) and SIT-related indices estimated in the model of a typical normal male 
with 70 kg body weight, 2400 mg red cell iron at 15 g/dl hemoglobin and 4800 ml blood volume, 
120 day mean red cell life span, 80% red cell radioiron utilization (RCU), and 30 mg/day plasma iron 
turnover rate (PIT) 

	 (cf. Table 3 and Fig. 7)

RCIT; red cell iron turnover rate: PIT × RCU/100 30 × 0.8 = 24 mg/day

RCIR; red cell iron renewal rate: (red cell iron/mean red cell life span) 2400/120 = 20 mg/day

PTIT; parenchymal tissue iron turnover rate: (PIT – RCIR) 30 – 20 = 10 mg/day

SIT; storage iron turnover rate: (PIT – RCIR) × 0.7* 10 × 0.7 = 7 mg/day

PTIT due to tissue-fixed radioiron: PIT × (1 – RCU/100) = PIT × 0.2 30 × 0.2 = 6 mg/day

SIT due to storage-fixed radioiron (SITf): (PIT – RCIT) × 0.7 = PIT × 0.2 × 0.7 6 × 0.7 = 4 mg/day

PTIT due to refluxed and red cell-fixed radioiron: (RCIT – RCIR) 24 – 20 = 4 mg/day

SIT due to refluxed and red cell-fixed radioiron (SITr): (RCIT – RCIR) × 0.7 4 × 0.7 = 3 mg/day

0.7* is the approximation ratio of storage iron to total parenchymal tissue iron in the normal male.1)

SIT/PIT/100 = 7/30/100 = 23%, RCIR/PIT = 2/3, and PTIT/PIT = 1/3.
SIT = SITf + SITr. PIT = RCIR + PTIT. 

Table 3	 Parenchymal tissue iron turnover rate (PTIT) estimated from (PIT – RCIR) and storage iron turnover 
rate (SIT) estimated from {(PIT – RCIR) × 0.7} in normal male 

	 RCU given by Huff R et al. was too low as a normal value. Moreover, red cell iron turnover rate 
(RCIT) was lower than red cell iron renewal rate (RCIR) contradictorily. 

	 (cf. Table 2 and Fig. 7 about a model case)

BW PTIT SIT SIT* RCU RCIT RCIR PIT RCIR/PIT SITf SITr

kg mg/day mg/day mg/day % mg/day mg/day mg/day % mg/day mg/day

Bothwell TH1) 70   9 6.3 5~7 80 19 15 24 63 3.4 2.9

Huff R104) 77   7 4.9 2.7 74 20 24** 27 89 3.9 1.0

Pollycove M107) 71.5 14 9.8 neg 91 32 21 35 61 2.1 7.7

A model case 70 10 7.0 - 80 24 20 30 67 4.2 2.8

Abbreviation: BW, body weight; RCIR, red cell iron renewal rate; SITf, storage iron turnover rate due to tissue-fixed 
radioiron; SITr, storage iron turnover rate due to refluxed and red cell-fixed radioiron; neg, negligible.
Tissue-fixed/Refluxed and red cell-fixed = (PIT – RCIR)/(RCIT – RCIR) = SITf/SITr. 
(RCIR/PIT/100) indicates net non-radioactive iron utilization (%).
SIT* indicates proposed storage iron turnover rate by authors. 
24** = red cell iron (2866 mg) × fraction of red cell iron renewal/day (0.0085).104) 
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