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MECHANICAL ADVANTAGES OF A TRUSS-STRUCTURE-
BASED FRACTURE FIXATION SYSTEM 

– A NOVEL FRACTURE FIXATION DEVICE “PINFIX” –

TeTSuya arai, Michiro yaMaMoTo, KaTSuyuKi iwaTSuKi, Tadahiro NaTSuMe,  
TaKaaKi ShiNohara, MaSahiro TaTebe, Shigeru KuriMoTo,  

hideyuKi oTa, Shuichi KaTo and hiToShi hiraTa

Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan

abSTracT

a small, light, ball-joint device called PinFix, which can instantly convert a simple percutaneous cross 
pin fracture fixation system into a rigid external fracture fixation system based on truss structure, was 
developed. The purpose of this study was to compare the mechanical load and breaking strength of this 
truss-structure-based fixation system to that of the conventionally used external cantilever structure-based 
fixation system. Three types of mechanical loading tests, axial, bending, and torsion, were performed on 
an artificial fractured bone treated with either three-dimensional PinFix fixation, two-dimensional PinFix 
fixation, or conventional external fixation. The three- and two-dimensional PinFix fixations showed signifi-
cantly more stiffness than conventional fixation on all three loading tests. Finite element analysis was next 
performed to calculate the stress distribution of the parts in PinFix and in the conventional fixator. The 
applied stress to the rod and connectors of PinFix was much less than that of the conventional external 
fixator. These results reflected the physical characteristic of truss structure in which applied load is converted 
to pure tension or compression forces along the members of the PinFix. in conclusion, PinFix is a simple 
fracture fixation system that has a truss-structure with a high rigidity. 
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iNTroducTioN

Providing sufficient stability, preservation of circulation, and avoidance of infection at the 
fracture site are the three most important requirements for promoting fracture healing.1-3) in 
order to provide an optimal healing environment, various fracture fixation techniques have been 
developed, such as transcutaneous Kirschner wire (K-wire) fixation, external fixation, plating, 
and intramedullary nailing.3-5) each method has its advantages and disadvantages. in terms of 
circulation preservation and infection avoidance, transcutaneous Kirschner wire (K-wire) fixation 
and external fixation have theoretical advantages over plating and intramedullary nailing due to 
their minimum damage to soft tissues and fracture fragments.6, 7) in addition, these procedures are 
usually performed following closed reduction. conversely, plating and intramedullary nailing tend 
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to be more harmful to the fracture site, but they generally allow more precise reduction, provide 
better stability, and allow patients more freedom of daily activity during fracture healing.8-10) 

Percutaneous K-wire fixation is a cost-effective procedure that does not require any special 
devices for implementation. it is also technically less demanding and is highly versatile in terms 
of its range of application.11) however, fixation provided by K-wires alone is less secure and 
carries significantly higher risk of loss of reduction than other techniques even when applied 
to fractures in the upper extremities.12) external fixation can generally provide much higher 
stability at the fracture site than K-wire fixation.13-15) connections between the external fixation 
device and its screws are located outside of the body. because of the much longer lever arms 
compared to those of internal fixation devices, a huge moment of force develops around them. 
Therefore, all of the components have to be rigidly fixed so that the fixator system can keep 
its shape. This makes the external fixator a heavy, cumbersome, and less versatile device. as a 
result, most external fixators are designed for a specific site or a specific type of fracture and 
are supplied with special jigs for assembly. external fixator devices use a cantilever structure, 
and they are only supported on one side with screws that project horizontally in space.16) These 
factors make the external fixation devices more expensive and more technically demanding 
compared to K-wire fixation. 

in architecture, bridges are designed and constructed using cantilever methods. To ameliorate 
the moment around the connections and to make them more robust against cyclic drifts, the use 
of diagonal support frames and sway braces is highly recommended.17) The X-bracing system is 
one of the easiest methods to transfer lateral loads in buildings.18) cross-bracing systems, with or 
without friction dampers, are believed to be fundamental for the seismic response.19) Therefore, 
cantilevered bridges in architecture are seldom completed as true cantilevers but are instead 
completed as truss bridges.17) a truss is a structure comprising one or more triangular units 
constructed with straight members whose ends are connected at joints, referred to as nodes,20) 
and external forces act only at the nodes and result in forces on the members that are either 
tensile or compressive, resulting in exclusion of moment.21, 22) 

we have developed a novel ball-joint device named the PinFix that instantly converts a 
simple crossed K-wire fixation system into a robust external fixation system by constructing a 
truss structure.

The purpose of this study was to compare the mechanical load and breaking strength of 
the fracture fixation of PinFix to those of the conventional cantilever external fixator using an 
artificial bone model and finite element analysis. 

MaTeriaLS aNd MeThodS

Mechanical loading tests
The PinFix is a plastic ball-joint weighing 2.9 g that can connect pins (ø1.6–2.4 mm) with 

rods (ø3 mm) at any desired angle to form a truss-structure-based fracture fixation system. as 
shown in Fig. 1(a-e), the pins are inserted in a crisscross fashion across the fracture site. This 
is a universal system that can be used to construct either two- or three-dimensional fixations in 
any configuration.

a 30 radius sawbone with a cancellous inner core and a foam cortical shell (26 cm long, 
5.5-mm canal diameter; Model #1027, Pacific research Laboratories, inc., Vashon, wa, uSa) 
was prepared for axial and bending load testing. The proximal radial shaft of each specimen 
was potted with a metallic adapter, leaving approximately 10 cm of the radius exposed. For the 
axial and bending load testing, an oscillating saw was used to create a transverse osteotomy 
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3 mm proximal to the styloid process. a 3-mm fracture gap was created by making a second 
transverse osteotomy 3 mm proximal to the initial cut, and this section of bone was removed 
to simulate the complete lack of cortical contact seen in severely comminuted, unstable, extra-
articular, distal radius fractures. The fracture models were divided randomly into the following 
groups: three-dimensional PinFix fixation (group a, n=5, Fig. 2a), two-dimensional PinFix 
fixation (group b, n=5, Fig. 2b), and conventional external fixation (hoffman ii mini external 
Fixator Stryker, Mahwah, NJ; group c, n=5, Fig. 2c). in the PinFix groups, 2.4-mm Kirschner 
wires were used for fixation. in group c, 3-mm dedicated threaded pins were used for fixation. 

The fracture models were placed on the loading platform of a universal testing machine 
(autograph ag-1, Shimazu, Kyoto, Japan). each specimen was loaded at a rate of 1 N/s to a 
maximum load of 3-mm displacement for both axial (Fig. 3a) and bending loads (Fig. 3b), with 
2-mm/min cross head speed. To generate optimal loading, a three-dimensional plastic gripping 
adaptor was put on the distal end of the sawbone radius during axial loading and on the volar 
side of the distal fragment during bending loading. displacements of 1, 2, and 3 mm were 
compared in the three groups, and the load-displacement curve was plotted for each axial and 
bending load. 

in the torsion loading, the machine had to grip both ends of the bones, but the radius bone 
could not be gripped firmly because of the shape. instead, the femur sawbones were used. Fifteen 
femurs (Model #1130, Pacific research Laboratories, inc. Vashon, wa, uSa) were prepared for 
torsion load testing. both sides of the femur were cut at 10 cm from the fracture site and fixed 

Fig. 1(a, b, c, d, e) Mechanism of the PinFix. The PinFix is a plastic ball-joint weighing 2.9 g that can connect 
pins (ø1.6–2.4 mm) with rods (ø3 mm) at any desired angle to form a truss-structure-based fracture 
fixation system. ‘a’ is the view from above. ‘b’ is the view from below. ‘c’ is the view from the side.

 The pins are inserted across the fracture site in a crisscross fashion. This is a universal system that can 
construct either two- or three-dimensional fixations in any configuration. The assembly is infinite (d and 
e)
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Fig. 3(a, b, c) axial, bending, and torsion loading in mechanical loading tests
 each specimen was loaded at a rate of 1 N/s to a maximum load of 3-mm displacement for both axial 

(a) and bending load (b), with 2-mm/min cross head speed. Torsion loading was applied as shown in 
‘c’. each specimen was loaded at a rate of 1 N/s to a maximum load of 25 N with a 2-cm moment 
arm in torsion.

Fig. 2(a, b, c) The fracture models in mechanical loading tests
 The fracture models were divided randomly into the following groups: three-dimensional PinFix fixation 

(group a, n=5, a), two-dimensional PinFix fixation (group b, n=5, b), and conventional three-dimensional 
external fixation (hoffman ii mini external Fixator Stryker, Mahwah, NJ; group c, n=5, c).
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using a metallic clamp of a testing machine (Low capacity Torsion Testing Systems, instron 
Japan, Kanagawa, Japan). The fracture fixation method using each fixator was tested in the 
same manner as the axial and bending loading. Torsion loading was applied as shown in Fig. 
3c. each specimen was loaded at a rate of 1 N/s to a maximum load of 25 N with a 2-cm 
moment arm in torsion. rotations of 10 and 20 degrees were compared in the three groups, and 
the load-displacement curve was plotted.

Finite element analysis
Simulated cylindrical bone that consisted of cancellous and cortical bone was created on the 

computer (Solidworks Simulation, dassault Systemes Solidworks corp. waltham, Ma, uSa). 
The material properties of cortical and cancellous bone were determined based on a previous 
report.23) The cylinder was divided into two parts to simulate the fracture. in order to fix the 
fracture, cantilever-frame-fixation (c.F.F) (Fig. 4a) or truss-frame- fixation (T.F.F) (Fig. 4b) was 
performed. The lower end of the cylinder was set to the cornerstone, and the other end received 
the load. The structures of the c.F.F were constructed with rods, connectors, and pins. all of 
them were made of Ti-6al-4V. in contrast, the T.F.F was constructed with rods, connectors, and 
pins. The materials of each part were Ti-6al-4V, PPSu, and SuS304, respectively. 

The material properties in each construct are shown in Table 1.
axial, bending, and torsion loading were applied. Fig. 5a and 5b show the each direction of 

the load to c.F.F and T.F.F. axial load stress testing (100 N), bending load stress testing (100 N), 
and torsional load stress testing (2 N∙m) were performed. The stress of each part was recorded.

Statistical analysis
all values from the mechanical testing are expressed as means±standard deviation. data were 

compared among the three groups using one-way analysis of variance (excel 2010 statistics). 

Fig. 4(a, b) cantilever-frame-fixation (c.F.F. a) and truss-frame-fixation (T.F.F. b). The cylinder was divided into 
two parts to simulate the fracture. in order to fix the fracture, c.F.F. or T.F.F. was performed.
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The level of significance for all tests was set at p<0.05.

Table 1 Material properties of each part in a finite element analysis

Fixation 
method Parts Material

Modulus of 
elasticity 
(N/mm2)

Poisson’s 
ratio

Mass density 
(kg/m3)

Tensile 
strength 
(N/mm2)

yield strength 
(N/mm2)

Truss-frame-
fixation 
(T.F.F: 
PinFix)

connector PPSu 2350 0.3 1290 70 –

φ2.4mmK-
wire SuS304 190000 0.29 8000 517.017 206.807

 φ3.1mm rod Ti-6al-4V 110000 0.3 4430 860 760

cantilever-
frame-fixation 

(c.F.F: 
conventional 

Fixator)

connector

Ti-6al-4V 110000 0.3 4430 860 760φ2.4mm Pin

φ5mm rod

- bone human bone 
(cortical) 17200 0.3 1640 106 –

- bone human bone 
(cancellous) 350 0.3 1020 7 –

Table 2 Load applied to each portion

Maximum stress (N/mm2)

axial bending Torsion

C.F.F T.F.F C.F.F T.F.F C.F.F T.F.F

1 rod 436.0 2.9 419.6 59.0 152.2 37.8 

2 distal connector 823.8 4.4 90.5 40.4 119.6 57.8 

3 Proximal connector 848.4 4.4 1061.0 35.3 109.0 57.9 

4 Pin-crossing-part 51.0 731.1 597.3

Fig. 5(a, b) direction of the load.
 ‘a’ and ‘b’ show the direction of the load to c.F.F. and T.F.F. axial load stress testing (100 N), bending 

load stress testing (100 N), and torsional load stress testing (2 N∙m) were performed.
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reSuLTS

Mechanical loading tests
Axial loading:

The load-displacement curve of the axial load is shown in Fig. 6. The load of 1-mm 
displacement for each group (a, b, c) with axial loading was 102.3±24.1 N, 56.2±18.2 N, 
and 14.9±3.7 N, respectively. That of 2-mm displacement was 209.4±37.2 N, 120.5±16.5 N, 
and 30.3±3.9 N, respectively, and 3-mm displacement was 310.9±48.8 N, 181.3±41.0 N, and 
44.8±5.6 N, respectively. 

comparisons between group a and c, and between group b and c, at 1-mm, at 2-mm, and 
at 3-mm displacements showed significant differences, with p-values of p=0.0001 and p=0.0134 
at 1 mm, p=0.0001 and p=0.0111 at 2 mm, and p=0.0001 and p=0.0093 at 3 mm, respectively. 

Bending loading
The load-displacement curve of the bending load is shown in Fig. 7. The load of 1-mm 

displacement for each group (a, b, c) in the bending loading was 21.8±13.9 N, 17.3±5.4 N, 
and 12.3±0.5 N, respectively. That of 2-mm displacement was 55.1±22.2 N, 43.8±9.2 N, and 
23.7±2.2 N, respectively, and 3-mm displacement was 98.9±17.8 N, 68.5±13.0 N, and 32.0±3.1 
N, respectively.

comparisons between group a and c and between group b and c at 1-mm and 2-mm 
displacements did not show significant differences (p=0.2022, p=0.4667, respectively). in con-
trast, significant differences were found at 3-mm displacement, with p-values of p=0.0001 and 
p=0.0061, respectively.

Torsion loading:

Fig. 6 The load-displacement curves of the axial load. The meaning of each line is as follows: group a (dotted 
line), group b (continuous line), and group c (long dashed dotted line). comparisons of two different 
fixations for group a and group c and for group b and group c, demonstrate significant differences 
at 1-mm displacement (p=0.0001, p=0.0134, respectively), at 2-mm displacement (p=0.0001, p=0.0111), 
and at 3-mm displacement (p=0.0001, p=0.0093). 
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Fig. 7 The load-displacement curves of the bending load.
 comparisons of two different fixations for group a and group c and for group b and group c, show 

no significant differences at 1-mm displacement (p=0.2022, p=0.4667, respectively). 
 although there are no significant differences between PinFix and conventional fixators at 1-mm and 

2-mm displacements, a significant difference is seen at 3-mm displacement between group a and group 
c (p=0.0001) and between group b and group c (p=0.0061).

Fig. 8 The load-angle curves of the torsion load.
 comparisons of two different fixations for group a and group c and for group b and group c, 

demonstrate significant differences at 10 degrees rotation (p=0.0000, p=0.0012), at 20 degrees rotation 
(p=0.0001, p=0.0111), and at 3-mm displacement (p=0.0000, p=0.0013). The three-dimensional PinFix 
fixation is strongest in torsion loading.
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The load-angle curve of torsion loading is shown in Fig. 8. The torque of 10-degree rotation 
for each group (a, b, c) in the torsion loading was 37.2±4.0 N∙m, 22.5±1.7 N∙m, and 16.4±1.4 
N∙m, respectively. That of 20-degree rotation was 58.6±4.8 N∙m, 33.0±1.1 N∙m, and 24.7±2.7 
N∙m, respectively.

comparisons between group a and c and between group b and at 10-degree and 20-degree 
rotations demonstrated significant differences, with p-values of p<0.0000 and p=0.0012 at 10 
degrees, and p=0.0001 and p=0.0111 at 20 degrees, respectively. The three-dimensional PinFix 
fixation was the strongest in torsion loading. 

Finite element analysis
as can be seen in Tables 1 and 2, finite element analysis (Fea) showed remarkable differences 

in the stress distribution pattern between c.F.F and T.F.F. under all three loading conditions. in 
axial loading, stress in the rod was 436.0 N/mm2 in c.F.F, while that in T.F.F, was 2.9 N/mm2, 
and stress at the distal and proximal connectors of c.F.F was 823.8 N/mm2 and 848.4 N/mm2, 
while stress at the distal and proximal connectors of T.F.F. were 4.4 N/mm2 and 4.4 N/mm2, 
respectively. in bending loading, stress on the rod was 419.6 N/mm2 in c.F.F, while that in T.F.F 
was 59.0 N/mm2, and stress at the distal and proximal connectors of c.F.F was 90.5 N/mm2 and 
1061.0 N/mm2, respectively, while stress at the distal and proximal connectors of T.F.F. was 40.4 
N/mm2 and 35.3 N/mm2, respectively. in torsion loading, stress on the rod was 152.2 N/mm2 in 
c.F.F, while that in T.F.F was 37.8 N/mm2, and stress at the distal and proximal connectors of 
c.F.F was 119.6 N/mm2 and 109.0 N/mm2, respectively, while stress at the distal and proximal 
connecters of c.F.F was 57.8 N/mm2 and 57.9 N/mm2, respectively. 

The results clearly demonstrated the differences between c.F.F. and T.F.F. under all three 
loading conditions. on the other hand, in T.F.F., a relatively high stress concentration takes 
place along the crossing pins inside the bone, with values of 51.0 N/mm2 in axial loading, 
731.1 N/mm2 in bending loading, and 597.3 N/mm2 in torsion loading. it appears that higher 
stress concentrations occur in rods and connectors in c.F.F, while the same happens in crossing 
pins inside the bone in T.F.F. These results indicate that the applied load is converted to a pure 
compression or tension load along the pins in the PinFix, thereby significantly reducing stress 
in members outside the bones. 

diScuSSioN

Truss-frames are composed of triangles that are the simplest geometric figure that will not 
deform once the lengths of the sides are fixed. in comparison, a four-sided figure such as a 
cantilever-frame will change shape in response to external forces. Therefore, both the angles and 
the lengths must be firmly fixed to retain its shape. 

Finite element analysis clearly showed high stress concentrations at the angles of the cantilever 
frame. in contrast, in the case of a truss frame, the mechanical stress is spread along the pins 
crossing the fracture site, and, therefore, less stress concentration occurs at the joints or along 
the rods. Therefore, the structure can be constructed using relatively small and weak connecting 
materials. because of this, it was possible to make the PinFix with plastic parts as light as 3 
g each. despite the lightweight material used, all mechanical load testing clearly demonstrated 
that the PinFix truss fixation can better withstand mechanical stresses in all directions than can 
conventional external fixator systems.

in truss structure, it is noteworthy that the predicted axial force is significantly smaller than 
the bending or torsion force. This result could be explained by the law of the lever.24) in the 
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case of axial load analysis, the axis of the applied load is almost collinear with the longitudinal 
axis of the bone. Therefore, the lever arm is practically zero. in contrast, in the case of bending 
and torsional load testing, the axis of the load is distant from the action point. a much larger 
lever arm in these tests results in much higher mechanical stress at the action point.

on the other hand, Fea showed a relatively high stress concentration along the pins around 
the cross part despite the fact that the two pins are not connected to each other within the 
bone in the PinFix. This reflects the physical characteristics of the truss, in which the applied 
deforming force is converted into pure compression or tension stress along the parts. This type 
of structure is widely used in a variety of truss constructions, such as brown truss bridges.25, 26) 

The mechanical loading test clearly showed the greater stiffness of the truss-frame, both of 
the three- and two-dimensional PinFix, than that of the cantilever-frame. in addition, the three-
dimensional PinFix was obviously stiffer than the two-dimensional PinFix. This indicates that 
a more robust structure can be constructed by combining the simple truss structures. in fact, 
according to Pouangare,27) a complex three-dimensional truss, alias ‘the space-truss’, can give 
constructions with extremely high strength.

in our mechanical study, sawbones were used. The main advantage28) of using sawbones is 
that their use has been well validated in comparisons with cadaver specimens, and they are 
considerably better represented in hand and upper extremity biomechanics research. in fact, a 
variety of problems with cadaver specimens have been pointed out, including high cost, tenuous 
availability, handling and storage challenges, and a remarkable degree of inter-specimen variability 
that reportedly exceeds 100% of the mean in some metrics.

historically, crisscross pin fixation has been widely used in fracture management.13) it is a less 
invasive fracture fixation technique that can be performed at any medical facility that uses simple 
fracture treatment devices such as image intensifiers, drills, and Kirschner wires. in addition, 
the technique is also widely used during surgery to temporarily maintain reduction until internal 
fixation with plates is completed. The caveat is that it is much less reliable compared to other 
fracture techniques and almost always requires additional supports such as cast immobilization.29) 
however, once the PinFix is attached to the Kirschner wires, it instantaneously becomes a stronger 
supporting device compared to other fixation systems.

PinFix is not the only external fixator using the truss structure. The cPX system developed 
by Mirza et al. is a uniplane external fixation system that supports multiple, small, 1.6-mm 
cross-pins.30) using a cadaveric fracture model, Strauss et al. compared the cPX system with 
volar locking plate fixation and concluded that there was no significant difference between the two 
fixation techniques. Their results also proved the mechanical advantages of a truss system. The 
problem of cPX is that it is a site-specific fracture fixation system. it can only be applied to a 
limited number of fracture types of the distal radius, such as ao type b2 or b3.31) in contrast, 
the PinFix can be used in various types and at various sites of fracture without requiring any 
special devices. indeed, a distal radius fracture might be a good indication for the PinFix, and 
it can also be used for forearm, elbow, and humerus fractures.

This study clearly demonstrated the usefulness of introducing the basics of structural engineer-
ing to the designing of fracture fixation devices.

in conclusion, by taking the mechanical advantages of truss structures into consideration, a 
simple fracture fixation device, the PinFix, which can convert a simple cross pin fixation into 
an extremely robust external fixation system by inducing drastic changes in load distribution, 
was successfully developed.
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