THREE TYPES OF VOLTAGE-DEPENDENT CALCIUM CURRENTS IN CULTURED HUMAN NEUROBLASTOMA CELLS

MASAO KITO¹, MITSUO MAEHARA², and KAZUYOSHI WATANABE³

¹ Department of Pediatrics, Chubu Rosai Hospital, Nagoya,
² Department of Pediatrics, Chubu National Hospital, Obu, and
³ Department of Pediatrics, Nagoya University School of Medicine, Nagoya, Japan

ABSTRACT

The voltage-dependent calcium current (I_{ca}) in cultured human neuroblastoma cells (NB-I) was studied by whole-cell recording. The low-threshold current (I_{l}), the high-threshold, fast inactivating current ($I_{h,f}$), and the high-threshold, slow inactivating current ($I_{h,s}$) were identified. I_{L} was blocked by Ni²⁺. $I_{h,f}$ was blocked by ω -conotoxin GVIA. $I_{h,s}$ was blocked by nifedipine, and enhanced by Bay K 8644. These characteristics indicate that I_{L} , $I_{h,f}$, and $I_{h,s}$, are consistent with the T-, N- and L-type I_{Ca} , respectively.

Key words: Calcium channel current, Whole cell recording, Human neuroblastoma NB-I

INTRODUCTION

Voltage-dependent Ca^{2+} channels play important roles in the regulation of many cellular functions.¹⁾ Recently, in addition to T- (low-threshold, transient) and L- (high-threshold, long-lasting) types of Ca^{2+} channels, a third type of Ca^{2+} channel (N-type; neither T nor L) has been shown in the cultured dorsal root ganglion neurons of the chick and mouse.^{2,3)} Carbone et al. reported T-, N- and L-type Ca^{2+} channels in human neuroblastoma IMR32 cells.⁴⁾ In the present study we describe three types of I_{Ca} in the neuroblastoma cells of human origin named NB-I.⁵⁾

MATERIALS AND METHODS

The human neuroblastoma cell line (NB-I) established by Miyake et al. was used.⁵⁾ Cells were cultured in RPMI 1640 medium, pH 7.4, supplemented with 10% fetal calf serum at a temperature of 37°C. NB-I cells were replaced on a small glass-covered culture dish and incubated for two to seven days before use.

A whole-cell recording of the patch-clamp techniques was applied to record I_{Ca} of the neuroblastoma cell under voltage-clamp conditions.⁶⁾ The cut-off frequency of the recording system was 700 Hz. The recording chamber with a bath volume of 0.2 ml in which NB-I cells were mounted was perfused with a gravity-fed perfusion system at a rate of 2 ml/min. I_{Ca} were evoked by applying step depolarizations of a 400-ms duration from -100 mV to +80 mV at 10 mV steps from the holding potential. The holding potentials were set at -80 mV for I_{L} and $I_{h.f.}$ and at -30 mV for $I_{h.s.}$. I_{Ca} were separated by sensitivity to the holding potential. Experiments were conducted at room temperature (22 to 25°C).

Correspondence: Dr. M. Kito, Department of Pediatrics, Chubu Rosai Hospital, Koumei 1-10-6, Minato-ku, Nagoya City, 455 Japan. Telephone (052) 652-5511 Fax (052) 653-3533 Accepted for Publication in November 10, 1994.

Masao Kito et al.

The normal external solution contained (mM): NaCl (36.7), BaCl₂ (51.2), MgCl₂ (1.18), glucose (11.8), HEPES-Na (10.0), and tetraethylammonium-Cl (TEA) (23.6) at pH 7.4. The patch pipette was filled with a solution containing (mM): Cs-Aspartate (106.2), CsCl (23.6), MgCl₂ (4.95), ATP-Na₂ (4.95), EGTA (9.9), HEPES-Na (4.95), and CaCl₂ (1.26) at pH 7.0. The resistance of the patch pipette was between 3 and 5 M Ω in the normal external solution. The voltage-dependent Na⁺ current was differentiated from I_{Ca} by its time constant. Tetrodotoxin (TTX) 3µM did not affect any of the I_{Ca} in NB-I cells (not shown). The voltage-dependent K⁺ current was blocked by the use of Cs⁺ as a dominant cation in the patch pipette solution and by the addition of TEA to the external solution. Ba²⁺ was used in the normal external solution because it is more permeant to the Ca²⁺ channel and also easier to analyze the amplitude with when compared with Ca^{2+, 6)}

The susceptibility to various Ca^{2+} channel blockers varies with the type of Ca^{2+} channel. We studied the blocking effects of some inorganic blockers (Ni²⁺, Cd²⁺ and La³⁺), dihydropyridine Ca^{2+} channel blocker (nifedipine) and ω -CgTX⁷) on different types of I_{Ca} in NB-I cells.

The membrane currents were recorded by using a pre-amplifier of CEZ 2100 (Nihon Kohden, Tokyo, Japan). Data were analyzed by using the PCLAMP ver 5.51 (Axopatch, USA). The numerical values were expressed as mean values \pm S.E.M.

Fig. 1. The voltage-dependent Ca²⁺ currents in human neuroblastoma (NB-I) cell line. (A) The typical inward currents evoked by applying a step-depolarization from a holding potential of -80 mV to the test potentials indicated to record I₁(a) and I_{h.f.}(b) and -30 mV for I_{h.s.}(c). (B) The typical current-voltage relationships of I_{1.}(a), I_{h.f.}(b) and I_{h.s.}(c). Data were obtained from different cells.

RESULTS

Fig. 1 shows three types of I_{Ca} recorded in NB-I cells. Fig. 1-A shows the time course of I_{Ca} evoked by a depolarizing stimulation of 400-ms duration. Fig. 1-B shows the current-voltage relationship (I-V curve). Il was activated by a depolarizing potential more positive than -50 mV, and was rapidly inactivated during the depolarizing test potentials with a time constant of 22.5 \pm 5.7 ms (n = 4) at a test potential of -10 mV (Fig. 1-A-a and Fig. 1-B-a). $I_{h.f.}$ was activated at a relatively large depolarization potential more positive than -20 mV, and decayed with a

Fig. 2. The voltage dependency of inactivation of $I_{l,}$, $I_{h.f.}$, and $I_{h.s.}$

The Ca²⁺ currents for I_L were evoked by applying a step-depolarization from a holding potential of -100 mV to the test potential of 0 mV. The test pulses were preceded by a 400-ms prepulse between -100 mV and +60 mV at 10 mV steps. The Ca²⁺ currents for I_{h.s.} and I_{h.s.} were evoked by applying a step-depolarization from a holding potential of -100 mV to the test potential of +20 mV. The test pulses were preceded by a 1500-ms prepulse between -100 mV and +60 mV at 10 mV steps. O: The peak amplitudes of the inward currents plotted against the voltage levels during the prepulse. Data points were fitted with a smooth curve derived from the Boltzmann equation. I/Imax = $[1+\exp(V-V_{1/2})/k]^{-1}$ where $V_{1/2} = -64$ mV and k = 4.1 mV. \triangle : I/Imax = $[1+\exp(V-V_{1/2})/k]^{-1}$ where $V_{1/2} = -18$ mV and k = 8.3 mV. $V_{1/2}$: mid-point, k: slope parameter

time constant of 120 \pm 8.8 ms (n = 5) at a test potential of 20 mV (Fig. 1-A-b and Fig. 1-B-b). I_{h.s.} was activated at depolarization potentials (V_t more positive than 0 mV) and showed little in-activation during a 400-ms depolarization (Fig. 1-A-c and Fig. 1-B-c).

Fig. 2 shows the voltage dependency of inactivation of $I_{l.}$, $I_{h.f.}$ and $I_{h.s.}$. $I_{l.}$ was strongly inactivated between -80 mV and -40 mV, and completely inactivated at -30 mV prepulse. The data points for $I_{l.}$ were fitted with a continuous smooth curve derived from the Boltzmann equation with a mid-point of -64 mV and a slope parameter of 4.1 mV (n = 5). The data points for $I_{h.f.}$ were fitted with a smooth curve derived from the Boltzmann equation of -32 mV and a slope parameter of 10.9 mV (n = 7). The data points for $I_{h.s.}$ were also fitted by the Boltzmann equation with a mid-point of -18 mV and a slope parameter of 8.3 mV (n = 4).

In Table 1, the electrophysiological and pharmacological properties of the three types of I_{Ca} (I_{L} , $I_{h.f.}$ and $I_{h.s.}$) recorded in NB-I cells are summarized. Relative conductances were measured when recordings were made with 10 mM-external Ca²⁺ instead of 50 mM-external Ba²⁺. Extracellular application of 100 μ M Ni²⁺ inhibited I_{L} by 82.6% (n = 8). On the other hand, 100 μ M Cd²⁺ inhibited $I_{h.f.}$ and $I_{h.s.}$ by 90.5% (n = 3) and 97.0% (n = 3), respectively. La³⁺ at 10 μ M inhibited $I_{h.s.}$ by 95.8% (n = 3). Nifedipine at 10 μ M inhibited $I_{h.s.}$ by 90.1% (n = 3). ω -CgTX at 5 μ M inhibited $I_{h.f.}$ by 66.6% (n = 4). Bay K 8644 10 μ M, a L-type Ca²⁺ channel agonist,⁸⁾ enhanced $I_{h.s.}$ by 32.4% (n = 9) when compared with the control state.

 $I_{l.}$, $I_{h.f.}$, $I_{h.s.}$, $I_{l.} + I_{h.f.}$, $I_{l.} + I_{h.s.}$, $I_{h.f.} + I_{h.s.}$, and $I_{l.} + I_{h.f.} + I_{h.s.}$ were detected in 23.5%, 2.5%, 21.0%, 0%, 39.5%, 3.7%, and 9.9% of the NB-I cells (n = 81) examined, respectively. Mean amplitudes of $I_{l.}$, $I_{h.f.}$, and $I_{h.s.}$ were 25.8 \pm 8.7 pA, 34.4 \pm 7.7 pA, and 45.2 \pm 18.3 pA, respectively. Two cells (2.5%) had only $I_{h.f.}$. The time course of $I_{h.f.}$ and the current-voltage

	Ι _Ι .	I _{h.f.}	I _{h.s.}
Acitivation range (for 50mM Ba ²⁺)	$>-50\mathrm{mV}$	$> - 20 \mathrm{mV}$	> 0 mV
Inactivation rate ($m{ au}$: ms) (50mM Ba ²⁺)	22.5±5.7 (-10mV)	120.4±8.8 (20mV)	>400
Relative conductances (Ca ^{2+/} Ba ²⁺)	1.02	0.68	0.17
$Ni^{2+}(100\mu M)$ inhibition	82.6±15.3%	38.7±18.8 %	69.6±6.8 %
Cd ²⁺ (100µM) inhibition	11.4±3.2 %	90.5±0.5 %	97.0±0.4 %
$La^{3+}(10\mu M)$ inhibition	24.3±5.5 %	66.7±16.7%	95.8±0.9 %
Nifedipine (10 µM) inhibition	20.6±0.6 %	40.0±9.6 %	90.1±5.9 %
ω -CgTX(5 μ M) inhibition	12.9±7.6%	66.6±12.2%	26.9±8.0%
Bay K 8644 (10µM) enhancement.	-5.8±18.6%	% −2.6±11.6%	32.4±27.2%

Table 1. The Electrophysiological and Pharmacological Properties of the Three Types of Ca²⁺ Currents in NB-ICells. Each value represents the mean values ± S.E.M.

relationship of $I_{h.f.}$ in Fig. 1 and the voltage dependency of inactivation of $I_{h.f.}$ in Fig. 2 were obtained from these two cells.

DISCUSSION

Recent reports have demonstrated that there are at least three types of Ca²⁺ channels in various neuronal cells such as sensory neurons,^{2,3)} and cultured rat hippocampal neurons.⁹⁾ Although the presence of three types of Ca²⁺ channels has been demonstrated in other human neuroblastoma IMR32 cells,⁴⁾ there is no other report of three types of Ca²⁺ channels in human neuroblastoma cells. In the cultured NB-I cells, we found three types of I_{Ca}, and named them, I_L(low-threshold current), I_{h.f.}(high-threshold, fast inactivating current) and I_{h.s.}(high-threshold, slow inactivating current). Ni²⁺ was more effective in blocking I_L than I_h. On the other hand, Cd²⁺ was more effective in blocking I_{h.} than I_L. Nifedipine was more effective in blocking I_{h.s.} than I_{1.} and I_{h.s.}. Bay K 8644 enhanced I_{h.s.}, whereas it did not enhance I_L and I_{h.f.}. I_l, I_{h.f.} and I_{h.s.} seem to be consistent with the T-, N- and L-type I_{Ca}, respectively.^{2,3)}

In conclusion, three types of Ca^{2+} channels reported in the several neuronal cells, i.e., T-, Nand L-type Ca^{2+} channels, were also found in NB-I cells. The neuroblastoma cell line has the advantages of easy maintenance and acquisition from the primary culture or the cytological isolation of the neurons.

ACKNOWLEDGEMENT

This work was supported by a grant from the Japan Epilepsy Research Foundation.

REFERENCES

- 1) Miller, R.L.: Multiple calcium channels and neuronal function. Science, 235, 46–52 (1987).
- Fox, A.P., Nowycky, M.C., and Tsien, R.W.: Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. (Lond), 394, 149-172 (1987).
- Kostyuk, P.G., Shuba, Y.M., and Savchenko, A.N.: Three types of calcium channels in the membrane of mouse sensory neurons. *Pflugers. Arch.*, 411, 661–669 (1988).
- Carbone, E., Sher, E., and Clementi, F.: Ca currents in human neuroblastoma IMR32 cells: Kinetics, permeability and pharmacology. *Pflugers. Arch.*, 416, 170–179 (1990).
- Miyake, S., Shimo, Y., and Kitamura, T.: Characteristics of continuous and functional cell line NB-1, derived from a human neuroblastoma. *Autonomic Nervous System*, 10, 115–120 (1973).
- Hamil, O.P., Marty, A., Neher, E., Sackmann, B., and Sigworth, F.J.: Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. *Pflugers. Arch.*, 391, 85–100 (1981).
- Kasai, H., Aosaki, T., and Fukuda, J.: Presynaptic Ca-antagonist ω-conotoxin irreversibly blocks N-type Cachannels in chick sensory neurons. *Neurosci. Res.*, 4, 228–235 (1987).
- Nowycky, M.C., Fox, A.P., and Tsien, R.W.: Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. *Proc. Natl. Acad. Sci. U.S.A.*, 82, 2178-2182 (1985).
- Ozawa, S., Tsuzuki, K., Iino, M., Ogura, A., and Kudo, Y.: Three types of voltage-dependent calcium current in cultured rat hippocampal neurons. *Brain Res.*, 495, 329–336 (1989).